Non-Three-Colourable Common Graphs Exist

被引:32
作者
Hatami, Hamed [1 ]
Hladky, Jan [2 ,3 ]
Kral, Daniel [4 ]
Norine, Serguei [5 ]
Razborov, Alexander [6 ]
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada
[2] Charles Univ Prague, Fac Math & Phys, Dept Appl Math, Prague 11800, Czech Republic
[3] Univ Warwick, Dept Comp Sci, DIMAP, Coventry CV4 7AL, W Midlands, England
[4] Charles Univ Prague, Fac Math & Phys, Inst Theoret Comp Sci, Prague 11800, Czech Republic
[5] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[6] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
基金
加拿大自然科学与工程研究理事会; 欧洲研究理事会; 俄罗斯基础研究基金会; 英国工程与自然科学研究理事会;
关键词
D O I
10.1017/S0963548312000107
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A graph H is called common if the sum of the number of copies of H in a graph G and the number in the complement of G is asymptotically minimized by taking G to be a random graph. Extending a conjecture of Erdos, Burr and Rosta conjectured that every graph is common. Thomason disproved both conjectures by showing that K-4 is not common. It is now known that in fact the common graphs are very rare. Answering a question of Sidorenko and of Jagger, St' ovicek and Thomason from 1996 we show that the 5-wheel is common. This provides the first example of a common graph that is not three-colourable.
引用
收藏
页码:734 / 742
页数:9
相关论文
共 20 条
  • [11] Hladky J., 2009, ARXIV09082791
  • [12] Multiplicities of subgraphs
    Jagger, C
    Stovicek, P
    Thomason, A
    [J]. COMBINATORICA, 1996, 16 (01) : 123 - 141
  • [13] Flag algebras
    Razborov, Alexander A.
    [J]. JOURNAL OF SYMBOLIC LOGIC, 2007, 72 (04) : 1239 - 1282
  • [14] ON 3-HYPERGRAPHS WITH FORBIDDEN 4-VERTEX CONFIGURATIONS
    Razborov, Alexander A.
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (03) : 946 - 963
  • [15] Sidorenko A, 1996, RANDOM STRUCT ALGOR, V8, P229, DOI 10.1002/(SICI)1098-2418(199605)8:3<229::AID-RSA6>3.0.CO
  • [16] 2-#
  • [17] Sidorenko A, 1989, MAT ZAMETKI, V46, P104
  • [18] Sidorenko A F., 1989, Matematicheskie Zametki, V46, P72
  • [19] Sidorenko AF., 1991, DISKRET MAT, V3, P50
  • [20] THOMASON A, 1989, J LOND MATH SOC, V39, P246