Non-Three-Colourable Common Graphs Exist

被引:32
作者
Hatami, Hamed [1 ]
Hladky, Jan [2 ,3 ]
Kral, Daniel [4 ]
Norine, Serguei [5 ]
Razborov, Alexander [6 ]
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada
[2] Charles Univ Prague, Fac Math & Phys, Dept Appl Math, Prague 11800, Czech Republic
[3] Univ Warwick, Dept Comp Sci, DIMAP, Coventry CV4 7AL, W Midlands, England
[4] Charles Univ Prague, Fac Math & Phys, Inst Theoret Comp Sci, Prague 11800, Czech Republic
[5] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[6] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
基金
加拿大自然科学与工程研究理事会; 欧洲研究理事会; 俄罗斯基础研究基金会; 英国工程与自然科学研究理事会;
关键词
D O I
10.1017/S0963548312000107
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A graph H is called common if the sum of the number of copies of H in a graph G and the number in the complement of G is asymptotically minimized by taking G to be a random graph. Extending a conjecture of Erdos, Burr and Rosta conjectured that every graph is common. Thomason disproved both conjectures by showing that K-4 is not common. It is now known that in fact the common graphs are very rare. Answering a question of Sidorenko and of Jagger, St' ovicek and Thomason from 1996 we show that the 5-wheel is common. This provides the first example of a common graph that is not three-colourable.
引用
收藏
页码:734 / 742
页数:9
相关论文
共 20 条
  • [1] Hypergraphs Do Jump
    Baber, Rahil
    Talbot, John
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (02) : 161 - 171
  • [2] QUASI-RANDOM GRAPHS
    CHUNG, FRK
    GRAHAM, RL
    WILSON, RM
    [J]. COMBINATORICA, 1989, 9 (04) : 345 - 362
  • [3] An Approximate Version of Sidorenko's Conjecture
    Conlon, David
    Fox, Jacob
    Sudakov, Benny
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (06) : 1354 - 1366
  • [4] Cummings J, 2011, J COMB, V2, P1
  • [5] Erdos P, 1962, MAGYAR TUD AKAD MAT, V7, P459
  • [6] Erdos P., 1984, PROGR GRAPH THEORY, P203
  • [7] Goodman A W., 1959, The American Mathematical Monthly, V66, P778, DOI 10.1080/00029890.1959.11989408
  • [8] Grzesik A., 2011, ARXIV11020962
  • [9] Hatami H., 2011, ARXIV11021634
  • [10] Graph norms and Sidorenko's conjecture
    Hatami, Hamed
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2010, 175 (01) : 125 - 150