Effects of compression on water distribution in gas diffusion layer materials of PEMFC in a point injection device by means of synchrotron X-ray imaging

被引:85
作者
Ince, Utku U. [1 ,3 ]
Markoetter, Henning [1 ]
George, Michael G. [2 ]
Liu, Hang [2 ]
Ge, Nan [2 ]
Lee, Jongmin [2 ]
Alrwashdeh, Saad S. [1 ,4 ]
Zeis, Roswitha [5 ,6 ]
Messerschmidt, Matthias [7 ]
Scholta, Joachim [7 ]
Bazylak, Aimy [2 ]
Manke, Ingo [1 ]
机构
[1] Helmholtz Zentrum Berlin, Hahn Meitner Pl 1, D-14109 Berlin, Germany
[2] Univ Toronto, Fac Appl Sci & Engn, Inst Sustainable Energy, Thermofluids Energy & Adv Mat Lab,Dept Mech & Ind, 5 Kings Coll Rd, Toronto, ON, Canada
[3] Univ Stuttgart, Fak Energie Verfahrens & Biotech 4, Pfaffenwaldring 9, D-70569 Stuttgart, Germany
[4] Mutah Univ, Fac Engn, Mech Engn Dept, POB 7, Al Karak 61710, Jordan
[5] Karlsruhe Inst Technol, Inst Phys Chem, Fritz Haber Weg 2, D-76131 Karlsruhe, Germany
[6] Karlsruhe Inst Technol, Helmholtz Inst Ulm, Helmholtzstr 11, D-89081 Ulm, Germany
[7] Baden Wurttemberg ZSW, Zentrum Sonnenenergie & Wasserstoffforsch, Helmholtzstr 8, D-89801 Ulm, Germany
关键词
Polymer electrolyte membrane fuel cell; Synchrotron X-ray imaging; Water management; In-plane water transport; GDL materials; Tortuosity; MEMBRANE FUEL-CELL; POROUS TRANSPORT LAYERS; LIQUID WATER; ACCELERATED DEGRADATION; CONTACT RESISTANCE; PART; MANAGEMENT; VISUALIZATION; RADIOGRAPHY; PERFORMANCE;
D O I
10.1016/j.ijhydene.2017.11.047
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, ex-situ experiments performed with a point injection device are conducted to evaluate water distributions in gas diffusion layer (GDL) materials which serve as porous transport media in polymer electrolyte membrane fuel cells (PEMFCs). In this regard, GDL samples manufactured by SGL Group are placed into the point injection device and visualized by means of synchrotron X-ray radiographic and tomographic imaging. The resulting image data undergoes a coordinate transformation that ascertains water agglomerations in GDL pores with regard to their radial displacements from the injection point. In this way, water transport in two different GDL samples possessing the same structural characteristics, but with unique compression rates, are investigated in terms of in-plane water distribution. The radial displacement analysis indicated that the pore saturation of the compressed GDL is higher in both the micro porous layer (MPL) region and the carbon fiber substrate region than that of the uncompressed GDL. The water agglomerations in the uncompressed GDL are predominantly observed in the vicinity of the injection point, indicating a limited in-plane transport. Conversely, in the compressed case water accumulations are detected far from the injection point, even at the edge of the GDL, pointing out that compression promotes the in-plane transport. Prior to the ex-situ experiments, both GDL samples have undergone an ageing procedure to mimic realistic cell operating conditions. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:391 / 406
页数:16
相关论文
共 88 条
[1]   The influence of porous transport layer modifications on the water management in polymer electrolyte membrane fuel cells [J].
Alink, R. ;
Haussmann, J. ;
Markoetter, H. ;
Schwager, M. ;
Manke, I. ;
Gerteisen, D. .
JOURNAL OF POWER SOURCES, 2013, 233 :358-368
[2]   Modeling the Liquid Water Transport in the Gas Diffusion Layer for Polymer Electrolyte Membrane Fuel Cells Using a Water Path Network [J].
Alink, Robert ;
Gerteisen, Dietmar .
ENERGIES, 2013, 6 (09) :4508-4530
[3]   Neutron radiographic in operando investigation of water transport in polymer electrolyte membrane fuel cells with channel barriers [J].
Alrwashdeh, Saad S. ;
Manke, Ingo ;
Markoetter, Henning ;
Haussmann, Jan ;
Kardjilov, Nikolay ;
Hilger, Andre ;
Kermani, Mohammad J. ;
Klages, Merle ;
Al-Falahat, A. M. ;
Scholta, Joachim ;
Banhart, John .
ENERGY CONVERSION AND MANAGEMENT, 2017, 148 :604-610
[4]   Improved Performance of Polymer Electrolyte Membrane Fuel Cells with Modified Microporous Layer Structures [J].
Alrwashdeh, Saad S. ;
Manke, Ingo ;
Markoetter, Henning ;
Haussmann, Jan ;
Arlt, Tobias ;
Hilger, Andre ;
Al-Falahat, A. M. ;
Klages, Merle ;
Scholta, Joachim ;
Banhart, John .
ENERGY TECHNOLOGY, 2017, 5 (09) :1612-1618
[5]   Investigation of water transport dynamics in polymer electrolyte membrane fuel cells based on high porous micro porous layers [J].
Alrwashdeh, Saad S. ;
Markoetter, Henning ;
Haussmann, Jan ;
Arlt, Tobias ;
Klages, Merle ;
Scholta, Joachim ;
Banhart, John ;
Manke, Ingo .
ENERGY, 2016, 102 :161-165
[6]  
[Anonymous], 2002, SCI ENG GUIDE DIGITA
[7]   Feasibility of combining electrochemical impedance spectroscopy and synchrotron X-ray radiography for determining the influence of liquid water on polymer electrolyte membrane fuel cell performance [J].
Antonacci, P. ;
Chevalier, S. ;
Lee, J. ;
Yip, R. ;
Ge, N. ;
Bazylak, A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (46) :16494-16502
[8]   Influence of artificially aged gas diffusion layers on the water management of polymer electrolyte membrane fuel cells analyzed with in-operando synchrotron imaging [J].
Arlt, Tobias ;
Klages, Merle ;
Messerschmidt, Matthias ;
Scholta, Joachim ;
Manke, Ingo .
ENERGY, 2017, 118 :502-511
[9]   Heterogeneous porosity distributions of polymer electrolyte membrane fuel cell gas diffusion layer materials with rib-channel compression [J].
Banerjee, R. ;
Hinebaugh, J. ;
Liu, H. ;
Yip, R. ;
Ge, N. ;
Bazylak, A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (33) :14885-14896
[10]  
Banhart J., 2008, RAD SOURCES INTERACT, P112