A Strongly Convergent Direct Method for Monotone Variational Inequalities in Hilbert Spaces

被引:63
作者
Cruz, J. Y. Bello [1 ]
Iusem, A. N. [1 ]
机构
[1] Inst Matematica Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
关键词
Armijo-type search; Korpelevich's method; Maximal monotone operators; Monotone variational inequalities; Projection method; Strong convergence;
D O I
10.1080/01630560902735223
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a two-step direct method, like Korpelevich's, for solving monotone variational inequalities. The advantage of our method over that one is that ours converges strongly in Hilbert spaces, whereas only weak convergence has been proved for Korpelevich's algorithm. Our method also has the following desirable property: the sequence converges to the solution of the problem that lies closest to the initial iterate.
引用
收藏
页码:23 / 36
页数:14
相关论文
共 13 条
[1]  
ALBER YI, 1983, SOV MATH DOKL, V27, P511
[2]  
Burachik R.S., 2007, Set-Valued Mappings and Enlargements of Monotone Operators
[3]  
CRUZ JYB, CONVERGENCE IN PRESS
[4]  
Facchinei F., 2007, Finite-dimensional variational inequalities and complementarity problems
[5]  
FANG SC, 1980, IEEE T AUTOMAT CONTR, V25, P1225, DOI 10.1109/TAC.1980.1102537
[6]   ON SOME NON-LINEAR ELLIPTIC DIFFERENTIAL-FUNCTIONAL EQUATIONS [J].
HARTMAN, P ;
STAMPACCHIA, G .
ACTA MATHEMATICA UPPSALA, 1966, 115 (3-4) :271-+
[7]  
Iusem A.N., 2000, Optimization, V48, P309
[8]  
IUSEM AN, 1994, COMPUT APPL MATH, V13, P103
[9]  
IUSEM AN, KORPELEVICH IN PRESS
[10]  
Iusem AN., 1997, OPTIMIZATION, V42, P309, DOI DOI 10.1080/02331939708844365