Temporal dynamics of Pinus tabulaeformis litter decomposition under nitrogen addition on the Loess Plateau of China

被引:13
作者
Jing, Hang [1 ]
Wang, Guoliang [1 ,2 ]
机构
[1] Northwest A&F Univ, Inst Soil & Water Conservat, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling 712100, Shaanxi, Peoples R China
[2] Chinese Acad Sci & Minist Water Resources, Inst Soil & Water Conservat, Yangling 712100, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Leaf litter; Decomposition; Nitrogen; Nutrient release; Mass loss; Microbial community; SOIL MICROBIAL COMMUNITIES; FOREST LITTER; LEAF-LITTER; DEPOSITION; RELEASE; FUNGAL; LIGNIN; IDENTIFICATION; LIMITATION; CARBON;
D O I
10.1016/j.foreco.2020.118465
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Litter decomposition in the early stage is determined by the release of easily decomposable substances, and that in the later stage is controlled by the contents of macromolecule compounds and microorganisms according to the two-stage model. However, the specific mechanism on how nitrogen (N) deposition changes litter decomposition on the basis of this model remains unknown. This study investigated the effects of multilevel N addition (control, low, medium, and high N amounts corresponding to 0, 3, 6, and 9 g N m(-2) y(-1), respectively) on the litter decomposition and nutrient release of Pinus tabulaeformis and the microbial community in the later stage on the Loess Plateau of China. Results were as follows. (1) N addition significantly increased the decomposition rate of P. tabulaeformis litter (P < 0.05) with the maximum value observed in the medium N treatment. (2) The release rates of soluble sugar, lignin, carbon (C), and N were significantly promoted by N addition with the best promotion effect found for medium N. Cellulose release was significantly inhibited by N addition, and medium N had the greatest inhibitory effect. (3) N addition had an insignificant effect on microbial community in later-stage decomposition but had significant influence on the relative abundances of Ascomycota, Zygomycota, and Davidiellaceae fungi. (4) Decomposition was controlled by the release of N, soluble sugar, and lignin in the early stage, and C release and three dominant fungal populations played important roles in the late stage. We conclude that the variations in N deposition, litter nutrient release and microbial community are important factors of decomposition and C flux in a forest ecosystem.
引用
收藏
页数:10
相关论文
共 73 条
  • [1] Aber JD, 2003, BIOSCIENCE, V53, P375, DOI 10.1641/0006-3568(2003)053[0375:INDATN]2.0.CO
  • [2] 2
  • [3] Nitrogen supply differentially affects litter decomposition rates and nitrogen dynamics of sub-arctic bog species
    Aerts, R
    van Logtestijn, RkSP
    Karlsson, PS
    [J]. OECOLOGIA, 2006, 146 (04) : 652 - 658
  • [4] Nitrogen alters carbon dynamics during early succession in boreal forest
    Allison, Steven D.
    Gartner, Tracy B.
    Mack, Michelle C.
    McGuire, Krista
    Treseder, Kathleen
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 2010, 42 (07) : 1157 - 1164
  • [5] Low levels of nitrogen addition stimulate decomposition by boreal forest fungi
    Allison, Steven D.
    LeBauer, David S.
    Ofrecio, M. Rosario
    Reyes, Randy
    Ta, Anh-Minh
    Tran, Tri M.
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 2009, 41 (02) : 293 - 302
  • [6] Microbial colonization of beech and spruce litter - Influence of decomposition site and plant litter species on the diversity of microbial community
    Aneja, Manish Kumar
    Sharma, Shilpi
    Fleischmann, Frank
    Stich, Susanne
    Heller, Werner
    Bahnweg, Guenther
    Munch, Jean Charles
    Schloter, Michael
    [J]. MICROBIAL ECOLOGY, 2006, 52 (01) : 127 - 135
  • [7] Tree species identity alters decomposition of understory litter and associated microbial communities: a case study
    Angst, Sarka
    Harantova, Lenka
    Baldrian, Petr
    Angst, Gerrit
    Cajthaml, Tomas
    Strakova, Petra
    Blahut, Jan
    Vesela, Hana
    Frouz, Jan
    [J]. BIOLOGY AND FERTILITY OF SOILS, 2019, 55 (05) : 525 - 538
  • [8] Home-field advantage accelerates leaf litter decomposition in forests
    Ayres, Edward
    Steltzer, Heidi
    Simmons, Breana L.
    Simpson, Rodney T.
    Steinweg, J. Megan
    Wallenstein, Matthew D.
    Mellor, Nate
    Parton, William J.
    Moore, John C.
    Wall, Diana H.
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 2009, 41 (03) : 606 - 610
  • [9] Litter decomposition and organic matter turnover in northern forest soils
    Berg, B
    [J]. FOREST ECOLOGY AND MANAGEMENT, 2000, 133 (1-2) : 13 - 22
  • [10] Berg B., 2003, PLANT LITTER