Increasing the bioactivity of elastomeric poly(ε-caprolactone) scaffolds for use in tissue engineering

被引:11
|
作者
Huot, Stephane [1 ,2 ]
Rohman, Geraldine [1 ,2 ]
Riffault, Mathieu [3 ]
Pinzano, Astrid [3 ]
Grossin, Laurent [3 ]
Migonney, Veronique [1 ,2 ]
机构
[1] Univ Paris 13, Sorbonne Paris Cite, CSPBAT, F-93430 Villetaneuse, France
[2] Univ Paris 13, Ethol & Sociobiol Lab, CNRS, UMR 7244, F-93430 Villetaneuse, France
[3] Univ Lorraine, CNRS, UMR 7561, LPPIA, Vandoeuvre Les Nancy, France
关键词
Tissue engineering; porous scaffolds; bioactive polymer; elastomeric PCL; pNaSS;
D O I
10.3233/BME-130752
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
BACKGROUND: Biodegradable polymers used in tissue engineering applications, such as poly(epsilon-caprolactone) (PCL), are hydrophobic leading to a lack of favorable cell signalization and finally to a poor cell adhesion, proliferation and differentiation. To overcome this problem, scaffolds undergo generally a surface modification. OBJECTIVE: Our laboratory has demonstrated that the grafting of poly(sodium styrene sulfonate) (pNaSS) onto titanium or poly(ethylene terephthalate) surfaces, leads to a more specific protein adsorption and a better control of cell proliferation. The objective of this work is to develop, through a straightforward way, bioactive elastomeric PCL scaffolds by grafting pNaSS. METHODS: Porous elastomeric PCL scaffolds were developed using a particulate-leaching process. pNaSS was grafted into the scaffold by a "grafting from" technique. In vitro tests were carried out to assess cell adhesion and protein expression. RESULTS: pNaSS was grafted homogeneously onto PCL scaffolds without degrading the biodegradable polymer or the porous structure. The in vitro studies have shown that pNaSS grafted onto PCL improves the cell response with a better expression of collagen, fibronectin and integrin alpha 1. CONCLUSIONS: The grafting of pNaSS onto biomaterial surfaces is a versatile method that can provide a new generation of biodegradable scaffolds which could be "biointegrable".
引用
收藏
页码:281 / 288
页数:8
相关论文
共 50 条
  • [1] Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering
    Cui, Zhixiang
    Nelson, Brenton
    Peng, YiYan
    Li, Ke
    Pilla, Srikanth
    Li, Wan-Ju
    Turng, Lih-Sheng
    Shen, Changyu
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2012, 32 (06): : 1674 - 1681
  • [2] Poly(ε-caprolactone) Nanocomposite Scaffolds for Tissue Engineering: A Brief Overview
    Mkhabela, Vuyiswa J.
    Ray, Suprakas Sinha
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (01) : 535 - 545
  • [3] Poly(caprolactone) based magnetic scaffolds for bone tissue engineering
    Banobre-Lopez, M.
    Pineiro-Redondo, Y.
    De Santis, R.
    Gloria, A.
    Ambrosio, L.
    Tampieri, A.
    Dediu, V.
    Rivas, J.
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (07)
  • [4] Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds by stereolithography
    Elomaa, Laura
    Teixeira, Sandra
    Hakala, Risto
    Korhonen, Harri
    Grijpma, Dirk W.
    Seppala, Jukka V.
    ACTA BIOMATERIALIA, 2011, 7 (11) : 3850 - 3856
  • [5] Tissue engineering scaffolds of mesoporous magnesium silicate and poly(ε-caprolactone)–poly(ethylene glycol)–poly(ε-caprolactone) composite
    Dawei He
    Wei Dong
    Songchao Tang
    Jie Wei
    Zhenghui Liu
    Xiaojiang Gu
    Ming Li
    Han Guo
    Yunfei Niu
    Journal of Materials Science: Materials in Medicine, 2014, 25 : 1415 - 1424
  • [6] Tissue engineering scaffolds of mesoporous magnesium silicate and poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) composite
    He, Dawei
    Dong, Wei
    Tang, Songchao
    Wei, Jie
    Liu, Zhenghui
    Gu, Xiaojiang
    Li, Ming
    Guo, Han
    Niu, Yunfei
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2014, 25 (06) : 1415 - 1424
  • [7] Electrospun chitosan-graft-poly (ε-caprolactone)/poly (ε-caprolactone) nanofibrous scaffolds for retinal tissue engineering
    Chen, Honglin
    Fan, Xianqun
    Xia, Jing
    Chen, Ping
    Zhou, Xiaojian
    Huang, Jin
    Yu, Jiahui
    Gu, Ping
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2011, 6 : 453 - 461
  • [8] Poly(ε-caprolactone) Scaffolds Fabricated by Melt Electrospinning for Bone Tissue Engineering
    Zaiss, Sascha
    Brown, Toby D.
    Reichert, Johannes C.
    Berner, Arne
    MATERIALS, 2016, 9 (04)
  • [9] Poly-ε-caprolactone/gel hybrid scaffolds for cartilage tissue engineering
    Schagemann, J. C.
    Chung, H. W.
    Mrosek, E. H.
    Stone, J. J.
    Fitzsimmons, J. S.
    O'Driscoll, S. W.
    Reinholz, G. G.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2010, 93A (02) : 454 - 463
  • [10] Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering
    Ghasemi-Mobarakeh, Laleh
    Prabhakaran, Molamma P.
    Morshed, Mohammad
    Nasr-Esfahani, Mohammad-Hossein
    Ramakrishna, Seeram
    BIOMATERIALS, 2008, 29 (34) : 4532 - 4539