The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy under Xe26+ ion irradiation

被引:19
作者
Chen, Huaican [1 ,2 ]
Hai, Yang [3 ]
Liu, Renduo [2 ]
Jiang, Li [2 ]
Ye, Xiang-xi [2 ]
Li, Jianjian [2 ]
Xue, Wandong [2 ]
Wang, Wanxia [2 ]
Tang, Ming [4 ]
Yan, Long [2 ]
Yin, Wen [1 ]
Zhou, Xingtai [2 ]
机构
[1] Chinese Acad Sci, Inst High Energy Phys, Dongguan Branch, Beijing 100049, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China
[3] Dongguan Univ Technol, Sch Mech Engn, Dongguan, Guangdong, Peoples R China
[4] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
基金
美国国家科学基金会;
关键词
Nickel-based alloy; Irradiation hardening; Nix-Gao model; Transmission electron microscopy (TEM); FISSION FUSION CORRELATION; MECHANICAL-PROPERTIES; STRUCTURAL-MATERIALS; RADIATION-DAMAGE; DEFECT EVOLUTION; GH3535; STEELS; MICROSTRUCTURE; ACCUMULATION; CHALLENGES;
D O I
10.1016/j.nimb.2018.02.018
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy was investigated. 7 MeV Xe26+ ion irradiation was performed at room temperature and 650 degrees C with peak damage dose from 0.05 to 10 dpa. With the increase of damage dose, the hardness of Ni-Mo-Cr and Ni-W-Cr alloy increases, and reaches saturation at damage dose >= 1 dpa. Moreover, the damage dose dependence of hardness in both alloys can be described by the Makin and Minter's equation, where the effective critical volume of obstacles can be used to represent irradiation hardening resistance of the alloys. Our results also show that Ni-W-Cr alloy has better irradiation hardening resistance than Ni-Mo-Cr alloy. This is ascribed to the fact that the W, instead of Mo in the alloy, can suppress the formation of defects under ion irradiation.
引用
收藏
页码:50 / 58
页数:9
相关论文
共 41 条
[1]   Generation-IV nuclear power: A review of the state of the science [J].
Abram, Tim ;
Ion, Sue .
ENERGY POLICY, 2008, 36 (12) :4323-4330
[2]   Point defect evolution in Ni, NiFe and NiCr alloys from atomistic simulations and irradiation experiments [J].
Aidhy, Dilpuneet S. ;
Lu, Chenyang ;
Jin, Ke ;
Bei, Hongbin ;
Zhang, Yanwen ;
Wang, Lumin ;
Weber, William J. .
ACTA MATERIALIA, 2015, 99 :69-76
[3]   FOIL THICKNESS MEASUREMENTS FROM CONVERGENT-BEAM DIFFRACTION PATTERNS [J].
ALLEN, SM .
PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1981, 43 (02) :325-335
[4]  
[Anonymous], 2013, FINAL REPORT
[5]  
Delpech S., 2009, PROCEEDING GIF S, P201
[6]   Correlation of yield stress and microhardness in 08Cr16Ni11Mo3 stainless steel irradiated to high dose in the BN-350 fast reactor [J].
Gusev, M. N. ;
Maksimkin, O. P. ;
Tivanova, O. V. ;
Silnaygina, N. S. ;
Garner, F. A. .
JOURNAL OF NUCLEAR MATERIALS, 2006, 359 (03) :258-262
[7]   The tensile behavior of GH3535 superalloy at elevated temperature [J].
Han, F. F. ;
Zhou, B. M. ;
Huang, H. F. ;
Leng, B. ;
Lu, Y. L. ;
Dong, J. S. ;
Li, Z. J. ;
Zhou, X. T. .
MATERIALS CHEMISTRY AND PHYSICS, 2016, 182 :22-31
[8]   Effect of long-term thermal exposure on the hot ductility behavior of GH3535 alloy [J].
Han, F. F. ;
Zhou, B. M. ;
Huang, H. F. ;
Leng, B. ;
Lu, Y. L. ;
Li, Z. J. ;
Zhou, X. T. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 673 :299-306
[9]   EFFECT OF FAST-NEUTRON IRRADIATION ON MECHANICAL-PROPERTIES OF STAINLESS-STEELS - AISI TYPES 304, 316 AND 347 [J].
HIGGY, HR ;
HAMMAD, FH .
JOURNAL OF NUCLEAR MATERIALS, 1975, 55 (02) :177-186
[10]   TEM, XRD and nanoindentation characterization of Xenon ion irradiation damage in austenitic stainless steels [J].
Huang, H. F. ;
Li, J. J. ;
Li, D. H. ;
Liu, R. D. ;
Lei, G. H. ;
Huang, Q. ;
Yan, L. .
JOURNAL OF NUCLEAR MATERIALS, 2014, 454 (1-3) :168-172