Creep behavior of a zirconium diboride-silicon carbide composite

被引:27
作者
Bird, Marc W. [1 ]
Aune, Robert P. [1 ]
Yu, Feng [2 ]
Becher, Paul F. [3 ]
White, Kenneth W. [1 ]
机构
[1] Univ Houston, Dept Mech Engn, Houston, TX 77204 USA
[2] MegaDiamond, Provo, UT 84604 USA
[3] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
关键词
Creep; Deformation; Cavitation; Diborides; UHTC; HIGH TEMPERATURE CERAMICS; TENSILE CREEP; DEFORMATION; OXIDATION; EVOLUTION; MECHANISMS; ZRB2; FLOW;
D O I
10.1016/j.jeurceramsoc.2013.03.022
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Flexural creep studies of ZrB2-20 vol% SiC ultra-high temperature ceramic were conducted over the range of 1400-1820 degrees C in an argon shielded testing apparatus. A two decade increase in creep rate, between 1500 and 1600 C, suggests a clear transition between two distinct creep mechanisms. Low temperature deformation (1400-1500 degrees C) is dominated by ZrB2 grain or ZrB2-SiC interphase boundary and ZrB2 lattice diffusion having an activation energy of 364 +/- 93 kJ/mol and a stress exponent of unity. At high temperatures (>1600 degrees C) the rate-controlling processes include ZrB2-ZrB2 and/or ZrB2-SiC boundary sliding with an activation energy of 639 +/- 1 kJ/mol and stress exponents of 1.7 < n < 2.2. In addition, cavitation is found in all specimens above 1600 degrees C where strain-rate contributions agree with a stress exponent of n = 2.2. Microstructure observations show cavitation may partially accommodate grain boundary sliding, but of most significance, we find evidence of approximately 5% contribution to the accumulated creep strain. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2407 / 2420
页数:14
相关论文
共 59 条
[1]  
Biner S.B., 1995, PLASTIC DEFORMATION, P495
[2]   Temperature-dependent mechanical and long crack behavior of zirconium diboride-silicon carbide composite [J].
Bird, Marc W. ;
Aune, Robert P. ;
Thomas, Alfred F. ;
Becher, Paul F. ;
White, Kenneth W. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2012, 32 (12) :3453-3462
[3]   CREEP CERAMICS .2. AN EXAMINATION OF FLOW MECHANISMS [J].
CANNON, WR ;
LANGDON, TG .
JOURNAL OF MATERIALS SCIENCE, 1988, 23 (01) :1-20
[4]   CREEP-BEHAVIOR OF A SINTERED SILICON-NITRIDE [J].
CHADWICK, MM ;
JUPP, RS ;
WILKINSON, DS .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1993, 76 (02) :385-396
[5]   High-strength zirconium diboride-based ceramics [J].
Chamberlain, AL ;
Fahrenholtz, WG ;
Hilmas, GE ;
Ellerby, DT .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2004, 87 (06) :1170-1172
[6]   CAVITATION DAMAGE DURING FLEXURAL CREEP OF SIALON-YAG CERAMICS [J].
CHEN, CF ;
WIEDERHORN, SM ;
CHUANG, TJ .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1991, 74 (07) :1658-1662
[8]   Sintering of nano crystalline α silicon carbide by doping with boron carbide [J].
Datta, MS ;
Bandyopadhyay, AK ;
Chaudhuri, B .
BULLETIN OF MATERIALS SCIENCE, 2002, 25 (03) :181-189
[9]   HIGH-TEMPERATURE FAILURE MECHANISMS IN CERAMICS [J].
EVANS, AG ;
RANA, A .
ACTA METALLURGICA, 1980, 28 (02) :129-141
[10]   Refractory diborides of zirconium and hafnium [J].
Fahrenholtz, William G. ;
Hilmas, Gregory E. ;
Talmy, Inna G. ;
Zaykoski, James A. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2007, 90 (05) :1347-1364