The influence of production mechanisms on pick-up ion loss at Mars

被引:38
作者
Curry, S. M. [1 ]
Liemohn, M. [1 ]
Fang, X. [2 ]
Ma, Y. [3 ]
Espley, J. [4 ]
机构
[1] Univ Michigan, Dept Atmospher & Space Sci, Ann Arbor, MI 48109 USA
[2] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA
[3] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA
[4] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
基金
美国国家科学基金会;
关键词
SOLAR-WIND INTERACTION; ATMOSPHERIC EROSION; IMPACT IONIZATION; VENUS; ESCAPE; ENVIRONMENT; ASPERA-3; PROTONS;
D O I
10.1029/2012JA017665
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This study quantifies the influence of ionization production mechanisms on ion escape and transport through near-Mars space. The Mars Test Particle simulation calculates the detailed ion velocity space distribution through a background magnetic and electric field model at specific locations. The main objective of this work is to extensively probe the sources of O+ ion escape relative to the production mechanisms: photoionization, charge exchange, and electron impact. Seven production methods are explored and compared, resulting in total production and loss rates differing up to two orders of magnitude. Photoionization was compared as a function of solar zenith angle and optical shadow. Charge exchange O+ production was studied with three methods: a constant rate assuming cold ion collisions, a constant rate proportional to the reaction cross-section and upstream solar wind bulk velocity, and finally a novel approach proportional to the cross-section and both the random and bulk velocity. Finally, electron impact ionization was considered as a constant and as a function of electron temperature. Of these methods, a baseline of the most physically relevant ion mechanisms was selected. Additionally, energy distributions at specific spatial locations highlight the individual ion populations in velocity space, revealing asymmetric and nongyrotropic features due to specific ionization methods. Analysis of the O+ flux and loss is in agreement with observations and also indicates a strong polar plume in the northern hemisphere for a given interplanetary magnetic field orientation. We calculate the total production and escape to be 2.5 x 10(25) and 6.4 x 10(24), respectively. Citation: Curry, S. M., M. Liemohn, X. Fang, Y. Ma, and J. Espley (2013), The influence of production mechanisms on pick-up ion loss at Mars, J. Geophys. Res. Space Physics, 118, 554-569, doi:10.1029/2012JA017665.
引用
收藏
页码:554 / 569
页数:16
相关论文
共 55 条
[1]   Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment [J].
Acuña, MH ;
Connerney, JEP ;
Ness, NF ;
Lin, RP ;
Mitchell, D ;
Carlson, CW ;
McFadden, J ;
Anderson, KA ;
Rème, H ;
Mazelle, C ;
Vignes, D ;
Wasilewski, P ;
Cloutier, P .
SCIENCE, 1999, 284 (5415) :790-793
[2]   The Combined Atmospheric Photochemistry and Ion Tracing code: Reproducing the Viking Lander results and initial outflow results [J].
Andersson, L. ;
Ergun, R. E. ;
Stewart, A. I. F. .
ICARUS, 2010, 206 (01) :120-129
[3]   A 50-degree spherical harmonic model of the magnetic field of Mars [J].
Arkani-Hamed, J .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2001, 106 (E10) :23197-23208
[4]   PICKED-UP PROTONS NEAR MARS - PHOBOS OBSERVATIONS [J].
BARABASH, S ;
DUBININ, E ;
PISSARENKO, N ;
LUNDIN, R ;
RUSSELL, CT .
GEOPHYSICAL RESEARCH LETTERS, 1991, 18 (10) :1805-1808
[5]   Martian atmospheric erosion rates [J].
Barabash, Stas ;
Fedorov, Andrei ;
Lundin, Rickard ;
Sauvaud, Jean-Andre .
SCIENCE, 2007, 315 (5811) :501-503
[6]   A three-dimensional MHD study of solar wind mass loading processes at Venus: Effects of photoionization, electron impact ionization, and charge exchange [J].
Bauske, R ;
Nagy, AF ;
Gombosi, TI ;
De Zeeuw, DL ;
Powell, KG ;
Luhmann, JG .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1998, 103 (A10) :23625-23638
[7]  
Bösswetter A, 2007, ANN GEOPHYS-GERMANY, V25, P1851
[8]   Comparative terrestrial planet thermospheres 3. Solar cycle variation of global structure and winds at solstices [J].
Bougher, SW ;
Engel, S ;
Roble, RG ;
Foster, B .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2000, 105 (E7) :17669-17692
[9]   A comparison of global models for the solar wind interaction with Mars [J].
Brain, D. ;
Barabash, S. ;
Boesswetter, A. ;
Bougher, S. ;
Brecht, S. ;
Chanteur, G. ;
Hurley, D. ;
Dubinin, E. ;
Fang, X. ;
Fraenz, M. ;
Halekas, J. ;
Harnett, E. ;
Holmstrom, M. ;
Kallio, E. ;
Lammer, H. ;
Ledvina, S. ;
Liemohn, M. ;
Liu, K. ;
Luhmann, J. ;
Ma, Y. ;
Modolo, R. ;
Nagy, A. ;
Motschmann, U. ;
Nilsson, H. ;
Shinagawa, H. ;
Simon, S. ;
Terada, N. .
ICARUS, 2010, 206 (01) :139-151
[10]   The solar wind interaction with the martian ionosphere/atmosphere [J].
Brecht, Stephen H. ;
Ledvina, Stephen A. .
SPACE SCIENCE REVIEWS, 2006, 126 (1-4) :15-38