Alloy design for intrinsically ductile refractory high-entropy alloys

被引:410
作者
Sheikh, Saad [1 ]
Shafeie, Samrand [1 ]
Hu, Qiang [2 ]
Ahlstrom, Johan [1 ]
Persson, Christer [1 ]
Vesely, Jaroslav [3 ]
Zyka, Jiri [3 ]
Klement, Uta [1 ]
Guo, Sheng [1 ]
机构
[1] Chalmers Univ Technol, Dept Mat & Mfg Technol, S-41296 Gothenburg, Sweden
[2] Jiangxi Acad Sci, Inst Appl Phys, Nanchang 330029, Peoples R China
[3] UJP PRAHA As, Nad Kaminkou 1345, Prague 15610, Czech Republic
关键词
SOLID-SOLUTION PHASE; MECHANICAL-PROPERTIES; STABILITY;
D O I
10.1063/1.4966659
中图分类号
O59 [应用物理学];
学科分类号
摘要
Refractory high-entropy alloys (RHEAs), comprising group IV (Ti, Zr, Hf), V (V, Nb, Ta), and VI (Cr, Mo, W) refractory elements, can be potentially new generation high-temperature materials. However, most existing RHEAs lack room-temperature ductility, similar to conventional refractory metals and alloys. Here, we propose an alloy design strategy to intrinsically ductilize RHEAs based on the electron theory and more specifically to decrease the number of valence electrons through controlled alloying. A new ductile RHEA, Hf0.5Nb0.5Ta0.5Ti1.5Zr, was developed as a proof of concept, with a fracture stress of close to 1 GPa and an elongation of near 20%. The findings here will shed light on the development of ductile RHEAs for ultrahigh-temperature applications in aerospace and power-generation industries. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 33 条
[1]  
Baker H., 1992, ALLOY PHASE DIAGRAMS, V3, P2
[2]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[3]   A computational approach to designing ductile Nb-Ti-Cr-Al solid-solution alloys [J].
Chan, KS .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2001, 32 (10) :2475-2487
[4]   Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy [J].
Dirras, G. ;
Lilensten, L. ;
Djemia, P. ;
Laurent-Brocq, M. ;
Tingaud, D. ;
Couzinie, J. -P. ;
Perriere, L. ;
Chauveau, T. ;
Guillot, I. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 654 :30-38
[5]  
Gao MC, 2016, High -entropy alloys
[6]   Searching for Next Single-Phase High-Entropy Alloy Compositions [J].
Gao, Michael C. ;
Alman, David E. .
ENTROPY, 2013, 15 (10) :4504-4519
[7]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[8]   Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy [J].
Guo, N. N. ;
Wang, L. ;
Luo, L. S. ;
Li, X. Z. ;
Su, Y. Q. ;
Guo, J. J. ;
Fu, H. Z. .
MATERIALS & DESIGN, 2015, 81 :87-94
[9]   Phase selection rules for cast high entropy alloys: an overview [J].
Guo, S. .
MATERIALS SCIENCE AND TECHNOLOGY, 2015, 31 (10) :1223-1230
[10]   Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J].
Guo, Sheng ;
Ng, Chun ;
Lu, Jian ;
Liu, C. T. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (10)