Carbon Catabolite Control of the Metabolic Network in Bacillus subtilis

被引:232
作者
Fujita, Yasutaro [1 ]
机构
[1] Fukuyama Univ, Fac Life Sci & Biotechnol, Dept Biotechnol, Hiroshima 7290292, Japan
关键词
Bacillus subtilis; catabolite repression; catabolite activation; CcpA; HPr; ILV-LEU OPERON; GLUTAMATE-DEHYDROGENASE GENE; REQUIRES SEQUENCES UPSTREAM; BETA-GLUCOSIDE UTILIZATION; CITST 2-COMPONENT SYSTEM; GLOBAL REGULATOR CODY; UNTRANSLATED RNA SR1; CONTROL PROTEIN CCPA; CHAIN AMINO-ACIDS; NUPC-PDP OPERON;
D O I
10.1271/bbb.80479
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The histidine-containing protein (HPr) is the energy coupling protein of the phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system (PTS), which catalyzes the transport of carbohydrates in bacteria. In Bacillus subtilis and close relatives, global regulation of carbon catabolite control occurs on the binding of the complex of CcpA (catabolite control protein A) and P-Ser-HPr (seryl-phosphorylated form of HPr) to the catabolite responsive elements (cre) of the target operons, the constituent genes of which are roughly estimated to number 300. The complex of CcpA and P-Ser-HPr triggers the expression of several genes involved in the formation of acetate and acetoin, major extracellular products of B. subtilis grown on glucose. It also triggers the expression of an anabolic operon (ilv-leu) involved in the biosynthesis of branched-chain amino acids, which subsequently leads to cell propagation. On the other hand, this complex represses many genes and operons, which include an entrance gene for the TCA cycle (citZ), several transporter genes for TCA cycle-intermediates, some respiration genes, and many catabolic and anabolic genes involved in carbon, nitrogen, and phosphate metabolism, as well as for certain extracellular enzymes and secondary metabolites. Furthermore, these bacteria have CcpA-independent catabolite regulation systems, each of which involves a transcriptional repressor of CggR or CcpN. CggR and CcpN are derepressed under glycolytic and gluconeogenic growth conditions, and enhance glycolysis and gluconeogenesis respectively. Another CcpA-independent catabolite repression system involves P-His-HPr (histidyl-phosphorylated form of HPr). P-His-HPr phosphorylates and activates glycerol kinase, whose product is necessary for antitermination of the glycerol utilization operon through GlpP, the antiterminators (LicT and SacT, Y) of several operons for the utilization of less-preferred PTS-sugars, and some transcriptional activators such as LevR for the levan utilization operon. This phosphorylation is reduced due to the decreased level of P-His-HPr during active transport of a preferred PTS-carbohydrate such as glucose, resulting in catabolite repression of the target operons. Thus CcpA-dependent and independent networks for carbon metabolism play a major role in the coordinate regulation of catabolism and anabolism to ensure optimum cell propagation in the presence and, the absence of a preferred PTS-carbohydrate.
引用
收藏
页码:245 / 259
页数:15
相关论文
共 158 条
[1]  
Ali NO, 2001, J BACTERIOL, V183, P2497
[2]   Regulation of the transport system for C4-dicarboxylic acids in Bacillus subtilis [J].
Asai, K ;
Baik, SH ;
Kasahara, Y ;
Moriya, S ;
Ogasawara, N .
MICROBIOLOGY-UK, 2000, 146 :263-271
[3]  
AYMERICH S, 2007, GLOBAL REGULATORY NE, P39
[4]   An enhancer element located downstream of the major glutamate dehydrogenase gene of Bacillus subtilis [J].
Belitsky, BR ;
Sonenshein, AL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (18) :10290-10295
[5]   CcpA-dependent regulation of Bacillus subtilis glutamate dehydrogenase gene expression [J].
Belitsky, BR ;
Kim, HJ ;
Sonenshein, AL .
JOURNAL OF BACTERIOLOGY, 2004, 186 (11) :3392-3398
[6]   Pho signal transduction network reveals direct transcriptional regulation of one two-component system by another two-component regulator:: Bacillus subtilis PhoP directly regulates production of ResD [J].
Birkey, SM ;
Liu, W ;
Zhang, XH ;
Duggan, MF ;
Hulett, FM .
MOLECULAR MICROBIOLOGY, 1998, 30 (05) :943-953
[7]   Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis:: regulation of the central metabolic pathways [J].
Blencke, HM ;
Homuth, G ;
Ludwig, H ;
Mäder, U ;
Hecker, M ;
Stülke, J .
METABOLIC ENGINEERING, 2003, 5 (02) :133-149
[8]   A sigma(E)-dependent operon subject to catabolite repression during sporulation in Bacillus subtilis [J].
Bryan, EM ;
Beall, BW ;
Moran, CP .
JOURNAL OF BACTERIOLOGY, 1996, 178 (16) :4778-4786
[9]   Molecular analysis of the interaction between the Bacillus subtilis trehalose repressor TreR and the tre operator [J].
Bürklen, L ;
Schöck, F ;
Dahl, MK .
MOLECULAR AND GENERAL GENETICS, 1998, 260 (01) :48-55
[10]  
Chambliss Glenn H., 1993, P213