Hopf bifurcation analysis of the Lu system

被引:40
作者
Yu, YG [1 ]
Zhang, SC [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.chaos.2003.12.063
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new practical method for distinguishing the chaotic, periodic and quasi-periodic orbits, and analysis the Hopf bifurcation using an analytic technique for the U system. As a result, we have further explored the dynamical behaviors. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1215 / 1220
页数:6
相关论文
共 15 条
[1]  
[Anonymous], 2002, CHAOTIC TIME SERIES
[2]  
Chen G., 1998, METHODOLOGIES PERSPE
[3]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[4]  
Kuznetsov Y.A., 2013, Elements of Applied Bifurcation Theory
[5]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[6]  
2
[7]  
LU J, 2002, CHAOS SOLITON FRACT, V14, P1
[8]  
LU J, 2002, INT J BIFURCAT CHAOS, V12
[9]   Dynamical analysis of a new chaotic attractor [J].
Lu, JH ;
Chen, GR ;
Zhang, SC .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (05) :1001-1015
[10]   A new chaotic attractor coined [J].
Lü, JH ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (03) :659-661