On the Strong (A)-Rings of Mahdou and Hassani

被引:9
作者
Dobbs, David E. [1 ]
Shapiro, Jay [2 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] George Mason Univ, Dept Math, Fairfax, VA 22030 USA
关键词
Commutative ring; Property A; zero-divisor; annihilator; prime ideal; associated prime; Noetherian; finite ring; integral domain;
D O I
10.1007/s00009-013-0276-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A (commutative unital) ring R with only finitely many minimal prime ideals (for instance, a Noetherian ring) is reduced and a strong (A)-ring if and only if R is an integral domain. Thus, the smallest reduced ring which has Property A but is not a strong (A)-ring is . A Noetherian ring R is a strong (A)-ring if and only if Ass (R) (R) has a unique maximal element.
引用
收藏
页码:1995 / 1997
页数:3
相关论文
共 4 条
[1]  
[Anonymous], 1989, CAMBRIDGE STUDIES AD
[2]  
Huckaba J. A., 1988, COMMUTATIVE RINGS ZE
[3]  
Kaplansky I., 1974, Commutative Rings
[4]   On Strong ()-Rings [J].
Mahdou, Najib ;
Hassani, Aziza Rahmouni .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2012, 9 (02) :393-402