Existence of nontrivial solutions for fractional Schrodinger equations with critical or supercritical growth

被引:10
作者
Li, Quanqing [1 ]
Teng, Kaimin [2 ]
Wu, Xian [3 ]
Wang, Wenbo [4 ]
机构
[1] Honghe Univ, Dept Math, Mengzi, Peoples R China
[2] Taiyuan Univ Technol, Dept Math, Taiyuan, Shanxi, Peoples R China
[3] Yunnan Normal Univ, Dept Math, Kunming, Yunnan, Peoples R China
[4] Yunnan Normal Univ, Dept Math & Stat, Kunming 650091, Yunnan, Peoples R China
基金
中国国家自然科学基金; 山西省青年科学基金;
关键词
critical or supercritical growth; fractional Schrodinger equation; variational methods;
D O I
10.1002/mma.5441
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following fractional Schrodinger equation with critical or supercritical growth (-Delta)su+V(x)u=f(x,u)+lambda|u|p-2u,x is an element of RN, where 0 < s < 1, N > 2s, lambda > 0, 2s*=2NN-2s, p >= 2s*, ( - Delta)(s) denotes the fractional Laplacian of order s and f is a continuous superlinear but subcritical function. Under some suitable conditions, we prove that the equation has a nontrivial solution for small lambda > 0 by variational methods. Our main contribution is related to the fact that we are able to deal with the case p>2s*.
引用
收藏
页码:1480 / 1487
页数:8
相关论文
共 16 条
[1]  
Bertoin J, 1996, Cambridge Tracts in Mathematics, V121
[2]   Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity [J].
Chang, X. ;
Wang, Z-Q .
NONLINEARITY, 2013, 26 (02) :479-494
[3]   Bound state for the fractional Schrodinger equation with unbounded potential [J].
Cheng, Ming .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (04)
[4]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[5]   EXISTENCE AND SYMMETRY RESULTS FOR A SCHRODINGER TYPE PROBLEM INVOLVING THE FRACTIONAL LAPLACIAN [J].
Dipierro, S. ;
Palatucci, G. ;
Valdinoci, E. .
MATEMATICHE, 2013, 68 (01) :201-216
[6]   Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian [J].
Felmer, Patricio ;
Quaas, Alexander ;
Tan, Jinggang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (06) :1237-1262
[7]   Fractional Schrodinger equation [J].
Laskin, N .
PHYSICAL REVIEW E, 2002, 66 (05) :7-056108
[8]   Fractional quantum mechanics and Levy path integrals [J].
Laskin, N .
PHYSICS LETTERS A, 2000, 268 (4-6) :298-305
[9]   Ground states for fractional Schrodinger equations with critical growth [J].
Li, Quanqing ;
Teng, Kaimin ;
Wu, Xian .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (03)
[10]   Existence of Positive Solutions for a Class of Critical Fractional Schrodinger Equations with Potential Vanishing at Infinity [J].
Li, Quanqing ;
Teng, Kaimin ;
Wu, Xian .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (02)