Somatostatin-Expressing Interneurons Enable and Maintain Learning-Dependent Sequential Activation of Pyramidal Neurons

被引:100
作者
Adler, Avital [1 ]
Zhao, Ruohe [1 ]
Shin, Myung Eun [2 ]
Yasuda, Ryohei [2 ,3 ]
Gan, Wen-Biao [1 ]
机构
[1] NYU, Sch Med, Dept Anesthesiol, Dept Neurosci & Physiol,Skirball Inst, New York, NY 10016 USA
[2] Max Planck Florida Inst Neurosci, Jupiter, FL 33458 USA
[3] Duke Univ, Med Ctr, Dept Neurobiol, Durham, NC 27710 USA
关键词
SYNAPTIC PLASTICITY; BACKWARD SHIFT; MOTOR CORTEX; SEQUENCES; GENERATION; INHIBITION; DYNAMICS; MODEL; NETWORKS; PATTERNS;
D O I
10.1016/j.neuron.2019.01.036
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The activities of neuronal populations exhibit temporal sequences that are thought to mediate spatial navigation, cognitive processing, and motor actions. The mechanisms underlying the generation and maintenance of sequential neuronal activity remain unclear. We found that layer 2 and/or 3 pyramidal neurons (PNs) showed sequential activation in the mouse primary motor cortex during motor skill learning. Concomitantly, the activity of somatostatin (SST)-expressing interneurons increased and decreased in a task-specific manner. Activating SST interneurons during motor training, either directly or via inhibiting vasoactive-intestinal-peptide-expressing interneurons, prevented learning-induced sequential activities of PNs and behavioral improvement. Conversely, inactivating SST interneurons during the learning of a new motor task reversed sequential activities and behavioral improvement that occurred during a previous task. Furthermore, the control of SST interneurons over sequential activation of PNs required CaMKII-dependent synaptic plasticity. These findings indicate that SST interneurons enable and maintain synaptic plasticity-dependent sequential activation of PNs during motor skill learning.
引用
收藏
页码:202 / +
页数:22
相关论文
共 64 条
[2]   A comparison of treadmill locomotion in adult cats before and after spinal transection [J].
Belanger, M ;
Drew, T ;
Provencher, J ;
Rossignol, S .
JOURNAL OF NEUROPHYSIOLOGY, 1996, 76 (01) :471-491
[3]   Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type [J].
Bi, GQ ;
Poo, MM .
JOURNAL OF NEUROSCIENCE, 1998, 18 (24) :10464-10472
[4]   A model of spatial map formation in the hippocampus of the rat [J].
Blum, KI ;
Abbott, LF .
NEURAL COMPUTATION, 1996, 8 (01) :85-93
[5]   Recurrent cortical circuits implement concentration-invariant odor coding [J].
Bolding, Kevin A. ;
Franks, Kevin M. .
SCIENCE, 2018, 361 (6407) :1088-+
[6]   Ultrasensitive fluorescent proteins for imaging neuronal activity [J].
Chen, Tsai-Wen ;
Wardill, Trevor J. ;
Sun, Yi ;
Pulver, Stefan R. ;
Renninger, Sabine L. ;
Baohan, Amy ;
Schreiter, Eric R. ;
Kerr, Rex A. ;
Orger, Michael B. ;
Jayaraman, Vivek ;
Looger, Loren L. ;
Svoboda, Karel ;
Kim, Douglas S. .
NATURE, 2013, 499 (7458) :295-+
[7]   Compartmentalization of GABAergic Inhibition by Dendritic Spines [J].
Chiu, Chiayu Q. ;
Lur, Gyorgy ;
Morse, Thomas M. ;
Carnevale, Nicholas T. ;
Ellis-Davies, Graham C. R. ;
Higley, Michael J. .
SCIENCE, 2013, 340 (6133) :759-762
[8]   Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity [J].
Cichon, Joseph ;
Gan, Wen-Biao .
NATURE, 2015, 520 (7546) :180-U80
[9]   Directed molecular evolution of DREADDs: a generic approach to creating next-generation RASSLs [J].
Dong, Shuyun ;
Rogan, Sarah C. ;
Roth, Bryan L. .
NATURE PROTOCOLS, 2010, 5 (03) :561-573
[10]   Dynamic Reorganization of Neuronal Activity Patterns in Parietal Cortex [J].
Driscoll, Laura N. ;
Pettit, Noah L. ;
Minderer, Matthias ;
Chettih, Selmaan N. ;
Harvey, Christopher D. .
CELL, 2017, 170 (05) :986-+