QUASIHYPERBOLIC METRIC AND QUASISYMMETRIC MAPPINGS IN METRIC SPACES

被引:27
作者
Huang, Xiaojun [1 ,2 ]
Liu, Jinsong [3 ,4 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
[2] Math Sci Res Inst Chongqing, Chongqing 401331, Peoples R China
[3] Chinese Acad Sci, HUA Loo Keng Key Lab Math, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China
关键词
FREE QUASICONFORMALITY; MAPS;
D O I
10.1090/S0002-9947-2015-06240-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that the quasihyperbolic metrics are quasi-invariant under a quasisymmetric mapping between two suitable metric spaces. Meanwhile, we also show that quasi-invariance of the quasihyperbolic metrics implies that the corresponding map is quasiconformal. At the end of this paper, as an application of these theorems, we prove that the composition of two quasisymmetric mappings in metric spaces is a quasiconformal mapping.
引用
收藏
页码:6225 / 6246
页数:22
相关论文
共 23 条
[1]   THE BOUNDARY CORRESPONDENCE UNDER QUASICON-FORMAL MAPPINGS [J].
BEURLING, A ;
AHLFORS, L .
ACTA MATHEMATICA, 1956, 96 (1-2) :125-142
[2]  
David G., 1990, ANAL PARTIAL DIFFERE, P101
[3]  
Federer H, 1996, Geometric Measure Theory, DOI 10.1007/978-3-642-62010-2
[4]   UNIFORM DOMAINS AND THE QUASI-HYPERBOLIC METRIC [J].
GEHRING, FW ;
OSGOOD, BG .
JOURNAL D ANALYSE MATHEMATIQUE, 1979, 36 :50-74
[5]   QUASI-CONFORMALLY HOMOGENEOUS DOMAINS [J].
GEHRING, FW ;
PALKA, BP .
JOURNAL D ANALYSE MATHEMATIQUE, 1976, 30 :172-199
[6]  
Hajlasz P., 2003, CONT MATH, V338, P173
[7]   DEFINITIONS OF QUASICONFORMALITY [J].
HEINONEN, J ;
KOSKELA, P .
INVENTIONES MATHEMATICAE, 1995, 120 (01) :61-79
[8]   Quasiconformal maps in metric spaces with controlled geometry [J].
Heinonen, J ;
Koskela, P .
ACTA MATHEMATICA, 1998, 181 (01) :1-61
[9]  
Heinonen J, 2001, J ANAL MATH, V85, P87
[10]  
HEINONEN J., 1997, Conform. Geom. Dyn., V1, P1