Nanopatterning using self-assembled thin films of degradable block copolymers (BCPs) has attracted considerable attention and inspired a variety of appealing applications in different research areas. To create useful nanopatterns for practical uses, controlling the orientation of the BCP microdomains is essential. The generation of oriented microdomains in BCP thin films will be discussed in this article. This discussion is followed by a review of methods that use polylactide-containing BCP (that is, polystyrene-b-poly(L-lactide) (PS-PLLA)) thin films to generate nanoporous PS after hydrolysis, which can be used for templated synthesis to create functional nanohybrids. The nanoporous PS thin films with well-oriented cylinder nanochannels can be used for pore-filling various ingredients to create specific drug delivery systems and optoelectronic devices. Moreover, by utilizing templated synthesis, nanoporous ceramics with a high-specific surface area and high porosity can be fabricated for optical applications using hydrolyzed gyroid-forming PS-PLLA as a template for the sol-gel reaction. In addition, the nanolithography applications using silicon-containing BCP (that is, polystyrene-b-polydimethylsiloxane) thin films, which can form inorganic nanoporous templates after oxygen plasma treatment, will be discussed in this review. NPG Asia Materials (2013) 5, e42; doi: 10.1038/am.2013.5; published online 15 March 2013