On the First Zassenhaus Conjecture and Direct Products

被引:4
作者
Baechle, Andreas [1 ]
Kimmerle, Wolfgang [2 ]
Serrano, Mariano [3 ]
机构
[1] Vrije Univ Brussel, Vakgrp Wiskunde, Pl Laan 2, B-1050 Brussels, Belgium
[2] Univ Stuttgart, Fachbereich Math, IGT, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
[3] Univ Murcia, Dept Matemat, Murcia 30100, Spain
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2020年 / 72卷 / 03期
关键词
integral group ring; torsion unit; Zassenhaus Conjecture; direct product; Frobenius group; HeLP method; INTEGRAL GROUP-RINGS; TORSION UNITS; CAMINA GROUPS; SUBGROUPS;
D O I
10.4153/S0008414X18000044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the behavior of the first Zassenhaus conjecture (ZC1) under direct products, as well as the General Bovdi Problem (Gen-BP), which turns out to be a slightly weaker variant of (ZC1). Among other things, we prove that (Gen-BP) holds for Sylow tower groups, and so in particular for the class of supersolvable groups. (ZC1) is established for a direct product of Sylow-by-abelian groups provided the normal Sylow subgroups form together a Hall subgroup. We also show (ZC1) for certain direct products with one of the factors a Frobenius group. We extend the classical HeLP method to group rings with coefficients from any ring of algebraic integers. This is used to study (ZC1) for the direct product G x A, where A is a finite abelian group and G has order at most 95. For most of these groups we show that (ZC1) is valid and for all of them that (Gen-BP) holds. Moreover, we also prove that (Gen-BP) holds for the direct product of a Frobenius group with any finite abelian group.
引用
收藏
页码:602 / 624
页数:23
相关论文
共 39 条
  • [1] [Anonymous], 2007, OBERWOLFACH REP, V4, P3209
  • [2] Bachle A., 2018, J SOFTW ALGEBRA GEOM, V8, P1, DOI DOI 10.2140/JSAG.2018.8.1
  • [3] The Status of the Zassenhaus Conjecture for Small Groups
    Bachle, Andreas
    Herman, Allen
    Konovalov, Alexander
    Margolis, Leo
    Singh, Gurmail
    [J]. EXPERIMENTAL MATHEMATICS, 2018, 27 (04) : 431 - 436
  • [4] On the Prime Graph Question for Integral Group Rings of 4-Primary Groups II
    Bachle, Andreas
    Margolis, Leo
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2019, 22 (02) : 437 - 457
  • [5] RATIONAL CONJUGACY OF TORSION UNITS IN INTEGRAL GROUP RINGS OF NON-SOLVABLE GROUPS
    Bachle, Andreas
    Margolis, Leo
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2017, 60 (04) : 813 - 830
  • [6] Bovdi A. A., 1987, UNIT GROUP INTEGRAL
  • [7] Zassenhaus conjecture for central extensions of S5
    Bovdi, Victor
    Hertweck, Martin
    [J]. JOURNAL OF GROUP THEORY, 2008, 11 (01) : 63 - 74
  • [8] Zassenhaus Conjecture for cyclic-by-abelian groups
    Caicedo, Mauricio
    Margolis, Leo
    del Rio, Angel
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2013, 88 : 65 - 78
  • [9] Cheng K. N., 1993, Proc. Amer. Math. Soc, V117, P1205, DOI [10.2307/2159554, DOI 10.2307/2159554]
  • [10] ON STRUCTURE OF GROUP ALGEBRAS .I.
    COHN, JA
    LIVINGST.D
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1965, 17 (04): : 583 - &