MAX-DOAS measurements and vertical profiles of glyoxal and formaldehyde in Madrid, Spain

被引:25
作者
Benavent, Nuria [1 ]
Garcia-Nieto, David [1 ]
Wang, Shanshan [2 ]
Saiz-Lopez, Alfonso [1 ,2 ]
机构
[1] CSIC, Inst Phys Chem Rocasolano, Dept Atmospher Chem & Climate, Serrano 119, Madrid 28006, Spain
[2] Fudan Univ, Dept Environm Sci & Engn, Shanghai Key Lab Atmospher Particle Pollut & Prev, Shanghai 200433, Peoples R China
关键词
MAX-DOAS; Air quality; Volatile organic compounds; Formaldehyde; Glyoxal; ABSORPTION CROSS-SECTIONS; CARBONYL-COMPOUNDS; URBAN-ENVIRONMENT; NITROGEN-DIOXIDE; RETRIEVAL; MODEL; ACETALDEHYDE; ATMOSPHERE; SCIAMACHY; AEROSOLS;
D O I
10.1016/j.atmosenv.2018.11.047
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Glyoxal (CHOCHO) and formaldehyde (HCHO) are organic trace gases that play an important role in tropospheric chemistry as oxidation products of a number of volatile organic compounds (VOCs). In this study, we report year-round daytime measurements of glyoxal and formaldehyde in the urban atmosphere of Madrid, Spain. Their vertical concentration profiles were retrieved using the Multi AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) technique and a Radiative Transfer Model (RTM) that simulates solar photon paths through the atmosphere. The diurnal variations of HCHO show two distinct peaks during the day, in the early morning and late afternoon in spring and summer, while the second peak is shifted towards noon in autumn and winter, due to lower photolysis rates and more effective boundary layer accumulation of HCHO in those seasons. The HCHO surface mixing ratios range from 6 ppbv to 27 ppbv in spring-summer and from 10 ppbv to 30 ppbv in autumn-winter. Monthly hourly-averaged glyoxal surface mixing ratios in the early morning show higher values during winter, 2 ppbv, than in summer, 0.7 ppbv. We also evaluated the ratio between glyoxal and formaldehyde (R-GF) surface mixing ratios, as an indicator of the nature of VOCs precursors. The R-GF was also correlated with the measured NO2, which represents a direct signal of anthropogenic emissions, along with the VOCs emission inventories in Madrid. The Et u results yielded higher ratios in spring, 0.1-0.13, than in winter and autumn (in the range of 0.02-0.07) when NO2 levels were higher.
引用
收藏
页码:357 / 367
页数:11
相关论文
共 58 条
[1]   Updated Smithsonian Astrophysical Observatory Ozone Monitoring Instrument (SAO OMI) formaldehyde retrieval [J].
Abad, G. Gonzalez ;
Liu, X. ;
Chance, K. ;
Wang, H. ;
Kurosu, T. P. ;
Suleiman, R. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2015, 8 (01) :19-32
[2]   Carbonyl compounds in the urban environment of Athens, Greece [J].
Bakeas, EB ;
Argyris, DI ;
Siskos, PA .
CHEMOSPHERE, 2003, 52 (05) :805-813
[3]   Development of a high-resolution emission inventory for Spain using the SMOKE modelling system:: A case study for the years 2000 and 2010 [J].
Borge, Rafael ;
Lumbreras, Julio ;
Rodriguez, Encarnacion .
ENVIRONMENTAL MODELLING & SOFTWARE, 2008, 23 (08) :1026-1044
[4]   Application of a short term air quality action plan in Madrid (Spain) under a high-pollution episode - Part II: Assessment from multi-scale modelling [J].
Borge, Rafael ;
Luis Santiago, Jose ;
de la Paz, David ;
Martin, Fernando ;
Domingo, Jessica ;
Valdes, Cristina ;
Sanchez, Beatriz ;
Rivas, Esther ;
Teresa Rozas, Ma ;
Lazaro, Sonia ;
Perez, Javier ;
Fernandez, Alvaro .
SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 635 :1574-1584
[5]   Assessment of microscale spatio-temporal variation of air pollution at an urban hotspot in Madrid (Spain) through an extensive field campaign [J].
Borge, Rafael ;
Narros, Adolfo ;
Artinano, Begona ;
Yague, Carlos ;
Javier Gomez-Moreno, Francisco ;
de la Paz, David ;
Roman-Cascon, Carlos ;
Diaz, Elias ;
Maqueda, Gregorio ;
Sastre, Mariano ;
Quaassdorff, Christina ;
Dimitroulopoulou, Chrysanthi ;
Vardoulakis, Sotiris .
ATMOSPHERIC ENVIRONMENT, 2016, 140 :432-445
[6]   An improved high-resolution solar reference spectrum for earth's atmosphere measurements in the ultraviolet, visible, and near infrared [J].
Chance, K. ;
Kurucz, R. L. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2010, 111 (09) :1289-1295
[7]   Multiple wavelength retrieval of tropospheric aerosol optical properties from MAXDOAS measurements in Beijing [J].
Clemer, K. ;
Van Roozendael, M. ;
Fayt, C. ;
Hendrick, F. ;
Hermans, C. ;
Pinardi, G. ;
Spurr, R. ;
Wang, P. ;
De Maziere, M. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2010, 3 (04) :863-878
[8]   Measurements of diurnal variations and eddy covariance (EC) fluxes of glyoxal in the tropical marine boundary layer: description of the Fast LED-CE-DOAS instrument [J].
Coburn, S. ;
Ortega, I. ;
Thalman, R. ;
Blomquist, B. ;
Fairall, C. W. ;
Volkamer, R. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2014, 7 (10) :3579-3595
[9]   Chemistry of Volatile Organic Compounds in the Los Angeles Basin: Formation of Oxygenated Compounds and Determination of Emission Ratios [J].
de Gouw, J. A. ;
Gilman, J. B. ;
Kim, S. -W. ;
Alvarez, S. L. ;
Dusanter, S. ;
Graus, M. ;
Griffith, S. M. ;
Isaacman-VanWertz, G. ;
Kuster, W. C. ;
Lefer, B. L. ;
Lerner, B. M. ;
McDonald, B. C. ;
Rappengluck, B. ;
Roberts, J. M. ;
Stevens, P. S. ;
Stutz, J. ;
Thalman, R. ;
Veres, P. R. ;
Volkamer, R. ;
Warneke, C. ;
Washenfelder, R. A. ;
Young, C. J. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2018, 123 (04) :2298-2319
[10]   Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry [J].
DiGangi, J. P. ;
Henry, S. B. ;
Kammrath, A. ;
Boyle, E. S. ;
Kaser, L. ;
Schnitzhofer, R. ;
Graus, M. ;
Turnipseed, A. ;
Park, J-H. ;
Weber, R. J. ;
Hornbrook, R. S. ;
Cantrell, C. A. ;
Maudlin, R. L., III ;
Kim, S. ;
Nakashima, Y. ;
Wolfe, G. M. ;
Kajii, Y. ;
Apel, E. C. ;
Goldstein, A. H. ;
Guenther, A. ;
Karl, T. ;
Hansel, A. ;
Keutsch, F. N. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (20) :9529-9543