High-resolution time-resolved spectroscopy based on hybrid asynchronous optical sampling

被引:3
作者
Hu, Hao [1 ,2 ,3 ]
Yang, Ningning [1 ,2 ,3 ]
Liao, Zichun [1 ,2 ,3 ]
Chen, Liao [1 ,2 ,3 ]
Zhang, Chi [1 ,2 ,3 ]
Wang, Weiqiang [4 ,5 ]
Zhang, Wenfu [4 ,5 ]
Zhang, Xinliang [1 ,2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[3] Opt Valley Lab, Wuhan 430074, Peoples R China
[4] Xian Inst Opt & Precis Mech, Chinese Acad Sci, State Key Lab Transient Opt & Photon, Xian 710119, Peoples R China
[5] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
DUAL-COMB; FREQUENCY;
D O I
10.1063/5.0108680
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The capability of characterizing arbitrary and non-repetitive emission spectra with a high resolution in real-time is of great merit in various research fields. Optical frequency combs provide precise and stable frequency grids for the measurement of a single spectral line with high accuracy. Particularly, dual-comb spectroscopy enables spectral measurement with a large bandwidth spanning tens of nanometers, but it is limited to measuring absorption spectra and has to trade-off spectral resolution vs the acquisition frame rate set by the repetition rate. Here, to alleviate these restrictions, we propose and demonstrate time-resolved spectroscopy for an emission spectrum based on hybrid asynchronous optical sampling, which features a spectral resolution of 0.63 pm, a frame rate of 1 MHz, and a measurement bandwidth of 13.6 nm, simultaneously. A mode-locked fiber comb with a repetition frequency of f(1 )is harnessed to interrogate emission spectral features with high resolution via optical Fourier transform achieved using a time-lens. Subsequently, a soliton microcomb of repetition frequency f(2s) asymptotic to 1000 f(1) serving as a probe pulse implements hybrid asynchronous optical sampling, thus significantly increasing the acquisition rate by nearly 3 orders of magnitude. As a proof-of-concept demonstration, the frequency trajectory of a rapidly scanning laser with a linear chirp of 6.2 THz/s is tracked. We believe that chip-scale microcombs will make the fast and high-resolution emission spectroscopy presented here a powerful tool for widespread applications. (C) 2022 Author(s)
引用
收藏
页数:9
相关论文
共 48 条
  • [11] Terabit optical OFDM superchannel transmission via coherent carriers of a hybrid chip-scale soliton frequency comb
    Geng, Yong
    Huang, Xiatao
    Cui, Wenwen
    Ling, Yun
    Xu, Bo
    Zhang, Jin
    Yi, Xingwen
    Wu, Baojian
    Huang, Shu-Wei
    Qiu, Kun
    Wong, Chee Wei
    Zhou, Heng
    [J]. OPTICS LETTERS, 2018, 43 (10) : 2406 - 2409
  • [12] Fast high-resolution spectroscopy of dynamic continuous-wave laser sources
    Giorgetta, F. R.
    Coddington, I.
    Baumann, E.
    Swann, W. C.
    Newbury, N. R.
    [J]. NATURE PHOTONICS, 2010, 4 (12) : 853 - 857
  • [13] Coherent dual-comb interferometry with quasi-integer-ratio repetition rates
    Hebert, Nicolas Bourbeau
    Boudreau, Sylvain
    Genest, Jerome
    Deschenes, Jean-Daniel
    [J]. OPTICS EXPRESS, 2014, 22 (23): : 29152 - 29160
  • [14] Herr T, 2014, NAT PHOTONICS, V8, P145, DOI [10.1038/NPHOTON.2013.343, 10.1038/nphoton.2013.343]
  • [15] Optical frequency synthesizer for precision spectroscopy
    Holzwarth, R
    Udem, T
    Hänsch, TW
    Knight, JC
    Wadsworth, WJ
    Russell, PSJ
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (11) : 2264 - 2267
  • [16] Ultrafast dynamic RF-spectrum investigation of soliton microcombs
    Hu, Hao
    Wang, Ruolan
    Wang, Weiqiang
    Chen, Liao
    Zhao, Yanjing
    Wang, Xinyu
    Zhang, Chi
    Zhang, Wenfu
    Zhang, Xinliang
    [J]. APL PHOTONICS, 2022, 7 (04)
  • [17] Microresonator-Based Optical Frequency Combs
    Kippenberg, T. J.
    Holzwarth, R.
    Diddams, S. A.
    [J]. SCIENCE, 2011, 332 (6029) : 555 - 559
  • [18] Dissipative Kerr solitons in optical microresonators
    Kippenberg, Tobias J.
    Gaeta, Alexander L.
    Lipson, Michal
    Gorodetsky, Michael L.
    [J]. SCIENCE, 2018, 361 (6402)
  • [19] Liu JQ, 2020, NAT PHOTONICS, V14, P486, DOI 10.1038/s41566-020-0617-x
  • [20] Synthesized soliton crystals
    Lu, Zhizhou
    Chen, Hao-Jing
    Wang, Weiqiang
    Yao, Lu
    Wang, Yang
    Yu, Yan
    Little, B. E.
    Chu, S. T.
    Gong, Qihuang
    Zhao, Wei
    Yi, Xu
    Xiao, Yun-Feng
    Zhang, Wenfu
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)