Existence of smooth global attractors for nonlinear viscoelastic equations with memory

被引:10
作者
Conti, Monica [1 ]
Geredeli, Pelin G. [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
[2] Hacettepe Univ, Fac Sci, Dept Math, TR-06800 Ankara, Turkey
关键词
Global attractors; Viscoelastic plate; Nonlinear damping; Hereditary memory; WAVE-EQUATIONS; SYSTEMS; DECAY;
D O I
10.1007/s00028-014-0270-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the memory relaxation of an Euler-Bernoulli plate equation with nonlinear source term and internal frictional damping of arbitrary polynomial growth. The main focus is the existence of a smooth global attractor for the associated dynamical system.
引用
收藏
页码:533 / 558
页数:26
相关论文
共 30 条
[1]  
Brezis H., 1973, North-Holland Mathematics Studies, V5
[2]  
Cavalcanti MM, 2004, DIFFER INTEGRAL EQU, V17, P495
[3]  
Chepyzhov V.V., 2002, Amer. Math. Soc.
[4]   On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation [J].
Chueshov, I ;
Eller, M ;
Lasiecka, I .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (9-10) :1901-1951
[5]  
Chueshov I, 2010, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-87712-9
[6]  
Chueshov I, 2008, MEM AM MATH SOC, V195, pVIII
[7]   Singular limit of differential systems with memory [J].
Conti, M ;
Pata, V ;
Squassina, M .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (01) :169-215
[8]   Uniform decay properties of linear Volterra integro-differential equations [J].
Conti, Monica ;
Gatti, Stefania ;
Pata, Vittorino .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2008, 18 (01) :21-45
[9]   Wave equations with memory: The minimal state approach [J].
Conti, Monica ;
Marchini, Elsa M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 384 (02) :607-625
[10]   SEMILINEAR WAVE EQUATIONS OF VISCOELASTICITY IN THE MINIMAL STATE FRAMEWORK [J].
Conti, Monica ;
Marchini, Elsa M. ;
Pata, Vittorino .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (04) :1535-1552