Sparsity Invariant CNNs

被引:586
作者
Uhrig, Jonas [1 ,2 ]
Schneider, Nick [1 ,3 ]
Schneider, Lukas [1 ,4 ]
Franke, Uwe [1 ]
Brox, Thomas [2 ]
Geiger, Andreas [4 ,5 ]
机构
[1] Daimler R&D Sindelfingen, Sindelfingen, Germany
[2] Univ Freiburg, Freiburg, Germany
[3] KIT Karlsruhe, Karlsruhe, Germany
[4] Swiss Fed Inst Technol, Zurich, Switzerland
[5] MPI Tubingen, Tubingen, Germany
来源
PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON 3D VISION (3DV) | 2017年
关键词
D O I
10.1109/3DV.2017.00012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we consider convolutional neural networks operating on sparse inputs with an application to depth completion from sparse laser scan data. First, we show that traditional convolutional networks perform poorly when applied to sparse data even when the location of missing data is provided to the network. To overcome this problem, we propose a simple yet effective sparse convolution layer which explicitly considers the location of missing data during the convolution operation. We demonstrate the benefits of the proposed network architecture in synthetic and real experiments with respect to various baseline approaches. Compared to dense baselines, the proposed sparse convolution network generalizes well to novel datasets and is invariant to the level of sparsity in the data. For our evaluation, we derive a novel dataset from the KITTI benchmark, comprising over 94k depth annotated RGB images. Our dataset allows for training and evaluating depth completion and depth prediction techniques in challenging real-world settings and is available online at: www.cvlibs.net/datasets/kitti.
引用
收藏
页码:11 / 20
页数:10
相关论文
共 59 条
[31]  
Chen X., 2016, MultiView 3D Object Detection Network for Autonomous Driving
[32]  
Cohen T. S., 2016, P INT C MACH LEARN I
[33]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[34]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199
[35]   Vision meets robotics: The KITTI dataset [J].
Geiger, A. ;
Lenz, P. ;
Stiller, C. ;
Urtasun, R. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) :1231-1237
[36]  
Geiger A., 2012, P IEEE C COMP VIS PA
[37]  
Graham B., 2015, ARXIV150502890
[38]  
Graham Benjamin, 2014, ARXIV14096070
[39]  
Hirschmüller H, 2008, IEEE T PATTERN ANAL, V30, P328, DOI 10.1109/TPAMl.2007.1166
[40]  
Kim J, 2016, IEEE CONF COMPUT