Logarithm Diameter Scaling and Carrier Density Independence of One-Dimensional Luttinger Liquid Plasmon

被引:21
作者
Wang, Sheng [1 ,2 ]
Wu, Fanqi [3 ]
Zhao, Sihan [1 ]
Watanabe, Kenji [4 ]
Taniguchi, Takashi [4 ]
Zhou, Chongwu [3 ,5 ]
Wang, Feng [1 ,2 ,6 ,7 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Southern Calif, Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA
[4] Natl Inst Mat Sci, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[5] Univ Southern Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
[6] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA
[7] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Luttinger liquid; carbon nanotubes; quantum plasmonics; infrared nanoimaging; WALL CARBON NANOTUBES; POLARITONS; CHARGE; MODEL;
D O I
10.1021/acs.nanolett.8b05031
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Quantum-confined electrons in one-dimensional (1D) metals are described by a Luttinger liquid. The collective charge excitations (i.e., plasmons) in a Luttinger liquid can behave qualitatively different from their conventional counterparts. For example, the Luttinger liquid plasmon velocity is uniquely determined by the electron-electron interaction, which scales logarithmly with the diameter of the 1D material. In addition, the Luttinger liquid plasmon is predicted to be independent of the carrier concentration. Here, we report the observation of such unusual Luttinger liquid plasmon behaviors in metallic single-walled carbon nanotubes, a model system featuring strong electron quantum confinement. We systematically investigate the plasmon propagation in over 30 metallic carbon nanotubes of different diameters using infrared nanoscopy. We establish that the plasmon velocity has a weak logarithm dependence on the nanotube diameter, as predicted by the Luttinger liquid theory. We further study the plasmon excitation as a function of the carrier density in electrostatically gated metallic carbon nanotubes and demonstrate that the plasmon velocity is completely independent of the carrier density. These behaviors are in striking contrast to conventional plasmons in 1D metallic shells, where the plasmon dispersion changes dramatically with the metal electron density and the 1D diameter. The unusual behaviors of Luttinger liquid plasmon may enable novel nanophotonic applications based on carbon nanotubes.
引用
收藏
页码:2360 / 2365
页数:6
相关论文
共 35 条
[21]   Real space imaging of one-dimensional standing waves: Direct evidence for a Luttinger liquid [J].
Lee, J ;
Eggert, S ;
Kim, H ;
Kahng, SJ ;
Shinohara, H ;
Kuk, Y .
PHYSICAL REVIEW LETTERS, 2004, 93 (16) :166403-1
[22]   Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes [J].
Liu, Bilu ;
Wu, Fanqi ;
Gui, Hui ;
Zheng, Ming ;
Zhou, Chongwu .
ACS NANO, 2017, 11 (01) :31-53
[23]   AN EXACTLY SOLUBLE MODEL OF A MANY-FERMION SYSTEM [J].
LUTTINGER, JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (09) :1154-&
[24]   Scaling of resistance and electron mean free path of single-walled carbon nanotubes [J].
Purewal, Meninder S. ;
Hong, Byung Hee ;
Ravi, Anirudhh ;
Chandra, Bhupesh ;
Hone, James ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2007, 98 (18)
[25]   Quantum plasmon resonances of individual metallic nanoparticles [J].
Scholl, Jonathan A. ;
Koh, Ai Leen ;
Dionne, Jennifer A. .
NATURE, 2012, 483 (7390) :421-U68
[26]  
Shi ZW, 2015, NAT PHOTONICS, V9, P515, DOI [10.1038/NPHOTON.2015.123, 10.1038/nphoton.2015.123]
[27]   Surface Plasmon Polaritons Propagation Along Armchair and Zigzag Single-Wall Carbon Nanotubes With Different Radii [J].
Soleymani, Sina ;
Golmohammadi, Saeed .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2017, 16 (02) :307-314
[28]   Guiding of a one-dimensional optical beam with nanometer diameter [J].
Takahara, J ;
Yamagishi, S ;
Taki, H ;
Morimoto, A ;
Kobayashi, T .
OPTICS LETTERS, 1997, 22 (07) :475-477
[29]   Individual single-wall carbon nanotubes as quantum wires [J].
Tans, SJ ;
Devoret, MH ;
Dai, HJ ;
Thess, A ;
Smalley, RE ;
Geerligs, LJ ;
Dekker, C .
NATURE, 1997, 386 (6624) :474-477
[30]   Room-temperature transistor based on a single carbon nanotube [J].
Tans, SJ ;
Verschueren, ARM ;
Dekker, C .
NATURE, 1998, 393 (6680) :49-52