Detecting Labrador Sea Water formation from space

被引:14
作者
Gelderloos, R. [1 ]
Katsman, C. A. [1 ]
Vage, K. [2 ]
机构
[1] Royal Netherlands Meteorol Inst, Global Climate Div, NL-3730 AE De Bilt, Netherlands
[2] Univ Bergen, Geophys Inst, Bergen, Norway
关键词
Labrador Sea Water; altimetry; deep convection; SUBPOLAR NORTH-ATLANTIC; DEEP CONVECTION; OCEAN; CIRCULATION; PATHWAYS;
D O I
10.1002/jgrc.20176
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
In situ monitoring of deep water formation in the Labrador Sea is severely hampered by the harsh winter conditions in this area. Furthermore, the ongoing monitoring programs do not cover the entire Labrador Sea and are often summer observations. The network of satellite altimeters does not suffer from these limitations and could therefore give valuable additional information. Altimeters can in theory detect deep water formation, because the water column becomes denser during convection and therefore the sea surface becomes lower. This signal is small compared to variability in sea surface height induced by other sources, but when properly filtered and appropriately averaged in time and space, all four winters with Labrador Sea Water formation or renewal in the 1994-2009 period (1994, 1995, 2000, and 2008) have a clear large negative anomaly. The magnitude of this anomaly compares favorably with the range predicted by theory and insitu data analysis. Out of 16 winters, only one winter (2006) would be falsely identified as a deep convection winter based on its sea surface height anomaly signal, while the method did not miss a single deep convection winter. For most deepwaterformation winters even the spatial structure of the mixed layer depth distribution can be inferred.
引用
收藏
页码:2074 / 2086
页数:13
相关论文
共 49 条
[1]  
AVISO, 2011, 2011 SSALTO DUACS US
[2]   Interannual variability of newly formed Labrador Sea Water from 1994 to 2005 [J].
Avsic, Tom ;
Karstensen, Johannes ;
Send, Uwe ;
Fischer, Juergen .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (21)
[3]   Causes of Interannual-Decadal Variability in the Meridional Overturning Circulation of the Midlatitude North Atlantic Ocean [J].
Biastoch, Arne ;
Boening, Claus W. ;
Getzlaff, Julia ;
Molines, Jean-Marc ;
Madec, Gurvan .
JOURNAL OF CLIMATE, 2008, 21 (24) :6599-6615
[4]   Interior pathways of the North Atlantic meridional overturning circulation [J].
Bower, Amy S. ;
Lozier, M. Susan ;
Gary, Stefan F. ;
Boening, Claus W. .
NATURE, 2009, 459 (7244) :243-U126
[5]   Global observations of nonlinear mesoscale eddies [J].
Chelton, Dudley B. ;
Schlax, Michael G. ;
Samelson, Roger M. .
PROGRESS IN OCEANOGRAPHY, 2011, 91 (02) :167-216
[6]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[7]   Flow response to large-scale topography: the Greenland tip jet [J].
Doyle, JD ;
Shapiro, MA .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 1999, 51 (05) :728-748
[8]  
Eden C, 2001, J CLIMATE, V14, P2266, DOI 10.1175/1520-0442(2001)014<2266:MOITDV>2.0.CO
[9]  
2
[10]   Interannual to decadal variability of outflow from the Labrador Sea [J].
Fischer, Juergen ;
Visbeck, Martin ;
Zantopp, Rainer ;
Nunes, Nuno .
GEOPHYSICAL RESEARCH LETTERS, 2010, 37