How is turbulence intensity determined by macroscopic variables in a toroidal plasma?

被引:58
作者
Inagaki, S. [1 ,2 ]
Tokuzawa, T. [3 ]
Tamura, N. [3 ]
Itoh, S. -I. [1 ,2 ]
Kobayashi, T. [4 ]
Ida, K. [2 ,3 ]
Shimozuma, T. [3 ]
Kubo, S. [3 ]
Tanaka, K. [3 ]
Ido, T. [3 ]
Shimizu, A. [3 ]
Tsuchiya, H. [3 ]
Kasuya, N. [1 ,2 ]
Nagayama, Y. [3 ]
Kawahata, K. [3 ]
Sudo, S. [3 ]
Yamada, H. [3 ]
Fujisawa, A. [1 ,2 ]
Itoh, K. [2 ,3 ]
机构
[1] Kyushu Univ, Appl Mech Res Inst, Kasuga, Fukuoka 8168580, Japan
[2] Kyushu Univ, Itoh Res Ctr Plasma Turbulence, Kasuga, Fukuoka 8168580, Japan
[3] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan
[4] Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, Kasuga, Fukuoka 8168580, Japan
关键词
ELECTRON HEAT-TRANSPORT; LARGE HELICAL DEVICE; ENERGY-TRANSPORT; TOKAMAK PLASMAS; ECE DIAGNOSTICS; ZONAL FLOWS; LHD; CONFINEMENT; W7-AS;
D O I
10.1088/0029-5515/53/11/113006
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We report observations of the dynamic response of micro-fluctuations and turbulent flux to a low-frequency heating power modulation in the Large Helical Device. The responses of heat flux and micro-fluctuation intensity differ from that of the change in temperature gradient. This result violates the local transport model, where turbulence is determined by the local temperature gradient. A new relationship between flux, gradient and turbulence is found. In addition to the temperature gradient, the heating rate is proposed as a new, direct controlling parameter of turbulence to explain the fast response of turbulence against periodic modulation of heating power.
引用
收藏
页数:9
相关论文
共 37 条
[1]   THE TIME BEHAVIOR OF THE THERMAL-CONDUCTIVITY DURING L-]H AND H-]L TRANSITIONS IN JET [J].
CORDEY, JG ;
MUIR, DG ;
NEUDATCHIN, SV ;
PARAIL, VV ;
ALIARSHAD, S ;
BARTLETT, DV ;
CAMPBELL, DJ ;
COSTLEY, AE ;
COLTON, AL ;
EDWARDS, AW ;
PORTE, L ;
SIPS, ACC ;
SPRINGMANN, EM ;
STUBBERFIELD, PM ;
VAYAKIS, G ;
VONHELLERMANN, MG ;
TARONI, A ;
THOMSEN, K .
PLASMA PHYSICS AND CONTROLLED FUSION, 1994, 36 (07) :A267-A272
[2]   Nondiffusive transport in plasma turbulence: A fractional diffusion approach [J].
del-Castillo-Negrete, D ;
Carreras, BA ;
Lynch, VE .
PHYSICAL REVIEW LETTERS, 2005, 94 (06)
[3]   Zonal flows in plasma - a review [J].
Diamond, PH ;
Itoh, SI ;
Itoh, K ;
Hahm, TS .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 (05) :R35-R161
[4]   On the validity of the local diffusive paradigm in turbulent plasma transport [J].
Dif-Pradalier, G. ;
Diamond, P. H. ;
Grandgirard, V. ;
Sarazin, Y. ;
Abiteboul, J. ;
Garbet, X. ;
Ghendrih, Ph. ;
Strugarek, A. ;
Ku, S. ;
Chang, C. S. .
PHYSICAL REVIEW E, 2010, 82 (02)
[5]   ELECTRON-CYCLOTRON-RESONANCE HEATING AND CURRENT DRIVE IN TOROIDAL FUSION PLASMAS [J].
ERCKMANN, V ;
GASPARINO, U .
PLASMA PHYSICS AND CONTROLLED FUSION, 1994, 36 (12) :1869-1962
[6]   'Non-local' response of RTP ohmic plasmas to peripheral perturbations [J].
Galli, P ;
Gorini, G ;
Mantica, P ;
Hogeweij, GMD ;
de Kloe, J ;
Cardozo, NJL .
NUCLEAR FUSION, 1999, 39 (10) :1355-1368
[7]   Electron energy transport inferences from modulated electron cyclotron heating in DIII-D [J].
Gentle, KW ;
Austin, ME ;
DeBoo, JC ;
Luce, TC ;
Petty, CC .
PHYSICS OF PLASMAS, 2006, 13 (01) :1-8
[8]   STRONG NONLOCAL EFFECTS IN A TOKAMAK PERTURBATIVE TRANSPORT EXPERIMENT [J].
GENTLE, KW ;
ROWAN, WL ;
BRAVENEC, RV ;
CIMA, G ;
CROWLEY, TP ;
GASQUET, H ;
HALLOCK, GA ;
HEARD, J ;
OUROUA, A ;
PHILLIPS, PE ;
ROSS, DW ;
SCHOCH, PM ;
WATTS, C .
PHYSICAL REVIEW LETTERS, 1995, 74 (18) :3620-3623
[9]   TOROIDAL ELECTRON-TEMPERATURE GRADIENT DRIVEN DRIFT MODES [J].
HORTON, W ;
HONG, BG ;
TANG, WM .
PHYSICS OF FLUIDS, 1988, 31 (10) :2971-2983
[10]   Slow transition of energy transport in high-temperature plasmas [J].
Ida, K ;
Inagaki, S ;
Sakamoto, R ;
Tanaka, K ;
Funaba, H ;
Takeiri, Y ;
Ikeda, K ;
Michael, C ;
Tokuzawa, T ;
Yamada, H ;
Nagayama, Y ;
Itoh, K ;
Kaneko, O ;
Komori, A ;
Motojima, O .
PHYSICAL REVIEW LETTERS, 2006, 96 (12)