Stability and kinetics of G-quadruplex structures

被引:598
作者
Lane, Andrew N. [1 ]
Chaires, J. Brad [1 ]
Gray, Robert D. [1 ]
Trent, John O. [1 ,2 ]
机构
[1] Univ Louisville, Struct Biol Program, JG Brown Canc Ctr, Louisville, KY 40202 USA
[2] Univ Louisville, Mol Targets Program, JG Brown Canc Ctr, Louisville, KY 40202 USA
关键词
D O I
10.1093/nar/gkn517
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this review, we give an overview of recent literature on the structure and stability of unimolecular G-rich quadruplex structures that are relevant to drug design and for in vivo function. The unifying theme in this review is energetics. The thermodynamic stability of quadruplexes has not been studied in the same detail as DNA and RNA duplexes, and there are important differences in the balance of forces between these classes of folded oligonucleotides. We provide an overview of the principles of stability and where available the experimental data that report on these principles. Significant gaps in the literature have been identified, that should be filled by a systematic study of well-defined quadruplexes not only to provide the basic understanding of stability both for design purposes, but also as it relates to in vivo occurrence of quadruplexes. Techniques that are commonly applied to the determination of the structure, stability and folding are discussed in terms of information content and limitations. Quadruplex structures fold and unfold comparatively slowly, and DNA unwinding events associated with transcription and replication may be operating far from equilibrium. The kinetics of formation and resolution of quadruplexes, and methodologies are discussed in the context of stability and their possible biological occurrence.
引用
收藏
页码:5482 / 5515
页数:34
相关论文
共 270 条
[1]   HUMAN TELOMERIC C-STRAND TETRAPLEXES [J].
AHMED, S ;
KINTANAR, A ;
HENDERSON, E .
NATURE STRUCTURAL BIOLOGY, 1994, 1 (02) :83-88
[2]   Baseline length and automated fitting of denaturation data [J].
Allen, DL ;
Pielak, GJ .
PROTEIN SCIENCE, 1998, 7 (05) :1262-1263
[3]   Structure and function in rhodopsin: Mapping light-dependent changes in distance between residue 65 in helix TM1 and residues in the sequence 306-319 at the cytoplasmic end of helix TM7 and in helix H8 [J].
Altenbach, C ;
Cai, KW ;
Klein-Seetharaman, J ;
Khorana, FG ;
Hubbell, WL .
BIOCHEMISTRY, 2001, 40 (51) :15483-15492
[4]   A topological mechanism for TRF2-enhanced strand invasion [J].
Amiard, Simon ;
Doudeau, Michel ;
Pinte, Sebastien ;
Poulet, Anais ;
Lenain, Christelle ;
Faivre-Moskalenko, Cendrine ;
Angelov, Dimitar ;
Hug, Nele ;
Vindigni, Alessandro ;
Bouvet, Philippe ;
Paoletti, Jacques ;
Gilson, Eric ;
Giraud-Panis, Marie-Josephe .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2007, 14 (02) :147-154
[5]   SALT NUCLEIC-ACID INTERACTIONS [J].
ANDERSON, CF ;
RECORD, MT .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1995, 46 :657-700
[6]  
[Anonymous], ELECTROPHORESIS THEO
[7]  
[Anonymous], 1980, BIOPHYS CHEM
[8]   A THERMODYNAMIC STUDY OF UNUSUALLY STABLE RNA AND DNA HAIRPINS [J].
ANTAO, VP ;
LAI, SY ;
TINOCO, I .
NUCLEIC ACIDS RESEARCH, 1991, 19 (21) :5901-5905
[9]   Biophysical characterization of the human telomeric (TTAGGG)4 repeat in a potassium solution [J].
Antonacci, Cosimo ;
Chaires, Jonathan B. ;
Sheardy, Richard D. .
BIOCHEMISTRY, 2007, 46 (15) :4654-4660
[10]   The contribution of cytosine protonation to the stability of parallel DNA triple helices [J].
Asensio, JL ;
Lane, AN ;
Dhesi, J ;
Bergqvist, S ;
Brown, T .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 275 (05) :811-822