An Efficient Framework for Producing Landsat-Based Land Surface Temperature Data Using Google Earth Engine

被引:55
作者
Wang, Mengmeng [1 ,2 ]
Zhang, Zhengjia [1 ,2 ]
Hu, Tian [3 ]
Wang, Guizhou [4 ]
He, Guojin [4 ]
Zhang, Zhaoming [4 ]
Li, Hua [4 ]
Wu, Zhijie [5 ]
Liu, Xiuguo [1 ]
机构
[1] China Univ Geosci Wuhan, Sch Geog & Informat Engn, Wuhan 430074, Hubei, Peoples R China
[2] Wuchang Univ Technol, Artificial Intelligence Sch, Wuhan 430223, Hubei, Peoples R China
[3] Griffith Univ, Environm Futures Res Inst, Sch Environm & Sci, Nathan, Qld 4111, Australia
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100101, Peoples R China
[5] Longyan Univ, Coll Resources Engn, Longyan 364012, Peoples R China
基金
中国国家自然科学基金;
关键词
Earth; Artificial satellites; Remote sensing; Land surface temperature; Atmospheric modeling; Land surface; MODIS; Google earth engine (GEE); land surface temperature; landsat series satellites; SINGLE-CHANNEL ALGORITHM; RADIATION BUDGET NETWORK; SPLIT-WINDOW ALGORITHM; EMISSIVITY RETRIEVAL; SURFRAD; ASTER; VALIDATION; GENERATION; AREAS; CHINA;
D O I
10.1109/JSTARS.2020.3014586
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A long time-series land surface temperature (LST) product is useful for ecological and environmental studies. However, current LST products cannot provide a global coverage at a fine spatial resolution (similar to 100 m) over a long period (>30 years). Landsat series satellites that have been launched since 1972 provide a unique opportunity to fill the gap. Here, we proposed a single-channel framework for producing global long time-series Landsat LST retrievals on a Google earth engine (GEE) cloud computing platform. This framework unifies the LST, land surface emissivity (LSE) and atmospheric water vapor (AWV) estimation algorithms, as well as the emissivity and atmospheric input data for the Landsat LST retrievals from the entire Landsat thermal infrared image archive. In situ LST measurements and the MODIS LST products were employed to evaluate Landsat LST retrievals using the proposed framework over land and water surfaces, respectively. In total, 1317 clear-sky LST samples were collected from the Landsat 5-8 series after spatiotemporal registration with seven sites, and the average bias and root-mean-square error (RMSE) were 0.33 and 2.01 K, respectively. Intercomparison between Landsat and MODIS LST retrievals based on 100 clear-sky scenes over 12 inland lakes showed an average bias of 0.17 K and RMSE of 1.11 K. We conclude that the proposed single-channel framework can produce Landsat LST with high accuracy following a simple yet robust way. Implementation of the single-channel method on GEE shows promise in providing the community with freely accessible and global long time-series (>30 years) LST data.
引用
收藏
页码:4689 / 4701
页数:13
相关论文
共 63 条
[1]   Water surface temperature estimation from Landsat 7 ETM+ thermal infrared data using the generalized single-channel method: Case study of Embalse del Rio Tercero (Cordoba, Argentina) [J].
Alejandra Lamaro, Anabel ;
Marinelarena, Alejandro ;
Edith Torrusio, Sandra ;
Estela Sala, Silvia .
ADVANCES IN SPACE RESEARCH, 2013, 51 (03) :492-500
[2]  
[Anonymous], 2005, J GEOPHYS RES ATMOS
[3]   An update on SURFRAD - The GCOS Surface Radiation budget network for the continental United States [J].
Augustine, JA ;
Hodges, GB ;
Cornwall, CR ;
Michalsky, JJ ;
Medina, CI .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2005, 22 (10) :1460-1472
[4]  
Augustine JA, 2000, B AM METEOROL SOC, V81, P2341, DOI 10.1175/1520-0477(2000)081<2341:SANSRB>2.3.CO
[5]  
2
[6]   Comparison between different sources of atmospheric profiles for land surface temperature retrieval from single channel thermal infrared data [J].
Coll, Cesar ;
Caselles, Vicente ;
Valor, Enric ;
Niclos, Raquel .
REMOTE SENSING OF ENVIRONMENT, 2012, 117 :199-210
[7]   Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine [J].
Dong, Jinwei ;
Xiao, Xiangming ;
Menarguez, Michael A. ;
Zhang, Geli ;
Qin, Yuanwei ;
Thau, David ;
Biradar, Chandrashekhar ;
Moore, Berrien, III .
REMOTE SENSING OF ENVIRONMENT, 2016, 185 :142-154
[8]   Baseline Surface Radiation Network (BSRN): structure and data description (1992-2017) [J].
Driemel, Amelie ;
Augustine, John ;
Behrens, Klaus ;
Colle, Sergio ;
Cox, Christopher ;
Cuevas-Agullo, Emilio ;
Denn, Fred M. ;
Duprat, Thierry ;
Fukuda, Masato ;
Grobe, Hannes ;
Haeffelin, Martial ;
Hodges, Gary ;
Hyett, Nicole ;
Ijima, Osamu ;
Kallis, Ain ;
Knap, Wouter ;
Kustov, Vasilii ;
Long, Charles N. ;
Longenecker, David ;
Lupi, Angelo ;
Maturilli, Marion ;
Mimouni, Mohamed ;
Ntsangwane, Lucky ;
Ogihara, Hiroyuki ;
Olano, Xabier ;
Olefs, Marc ;
Omori, Masao ;
Passamani, Lance ;
Pereira, Enio Bueno ;
Schmithuesen, Holger ;
Schumacher, Stefanie ;
Sieger, Rainer ;
Tamlyn, Jonathan ;
Vogt, Roland ;
Vuilleumier, Laurent ;
Xia, Xiangao ;
Ohmura, Atsumu ;
Koenig-Langlo, Gert .
EARTH SYSTEM SCIENCE DATA, 2018, 10 (03) :1491-1501
[9]   Validation of Collection 6 MODIS land surface temperature product using in situ measurements [J].
Duan, Si-Bo ;
Li, Zhao-Liang ;
Li, Hua ;
Goettsche, Frank-M ;
Wu, Hua ;
Zhao, Wei ;
Leng, Pei ;
Zhang, Xia ;
Coll, Cesar .
REMOTE SENSING OF ENVIRONMENT, 2019, 225 :16-29
[10]   Land-surface temperature retrieval from Landsat 8 single-channel thermal infrared data in combination with NCEP reanalysis data and ASTER GED product [J].
Duan, Si-Bo ;
Li, Zhao-Liang ;
Wang, Chenguang ;
Zhang, Shuting ;
Tang, Bo-Hui ;
Leng, Pei ;
Gao, Mao-Fang .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (5-6) :1763-1778