QUERY-EFFICIENT ADVERSARIAL ATTACK BASED ON LATIN HYPERCUBE SAMPLING

被引:6
作者
Wang, Dan [1 ]
Lin, Jiayu [1 ]
Wang, Yuan-Gen [1 ]
机构
[1] Guangzhou Univ, Sch Comp Sci & Cyber Engn, Guangzhou, Peoples R China
来源
2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2022年
基金
中国国家自然科学基金;
关键词
adversarial attacks; boundary attacks; Latin Hypercube Sampling; query efficiency;
D O I
10.1109/ICIP46576.2022.9897705
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to be applicable in real-world scenario, Boundary Attacks (BAs) were proposed and ensured one hundred percent attack success rate with only decision information. However, existing BA methods craft adversarial examples by leveraging a simple random sampling (SRS) to estimate the gradient, consuming a large number of model queries. To overcome the drawback of SRS, this paper proposes a Latin Hypercube Sampling based Boundary Attack (LHS-BA) to save query budget. Compared with SRS, LHS has better uniformity under the same limited number of random samples. Therefore, the average on these random samples is closer to the true gradient than that estimated by SRS. Various experiments are conducted on benchmark datasets including MNIST, CIFAR, and ImageNet-1K. Experimental results demonstrate the superiority of the proposed LHS-BA over the state-of-the-art BA methods in terms of query efficiency. The source codes are publicly available at https://github.com/GZHU-DVL/LHS-BA.
引用
收藏
页码:546 / 550
页数:5
相关论文
共 18 条
[1]  
Brendel W., 2018, 6 INT C LEARN REPR I
[2]   Towards Evaluating the Robustness of Neural Networks [J].
Carlini, Nicholas ;
Wagner, David .
2017 IEEE SYMPOSIUM ON SECURITY AND PRIVACY (SP), 2017, :39-57
[3]   HopSkipJumpAttack: A Query-Efficient Decision-Based Attack [J].
Chen, Jianbo ;
Jordan, Michael, I ;
Wainwright, Martin J. .
2020 IEEE SYMPOSIUM ON SECURITY AND PRIVACY (SP 2020), 2020, :1277-1294
[4]  
Chen PY, 2017, P 10 ACM WORKSH ART, P15, DOI [10.1145/3128572.3140448, DOI 10.1145/3128572.3140448]
[5]  
Cheng Minhao, 2019, P INT C LEARNING REP
[6]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[7]   Boosting Adversarial Attacks with Momentum [J].
Dong, Yinpeng ;
Liao, Fangzhou ;
Pang, Tianyu ;
Su, Hang ;
Zhu, Jun ;
Hu, Xiaolin ;
Li, Jianguo .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :9185-9193
[8]   Robust Physical-World Attacks on Deep Learning Visual Classification [J].
Eykholt, Kevin ;
Evtimov, Ivan ;
Fernandes, Earlence ;
Li, Bo ;
Rahmati, Amir ;
Xiao, Chaowei ;
Prakash, Atul ;
Kohno, Tadayoshi ;
Song, Dawn .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :1625-1634
[9]  
Goodfellow I. J., 2015, 3 INT C LEARN REPR I
[10]   Identity Mappings in Deep Residual Networks [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 :630-645