Rotation-Equivariant Semantic Instance Segmentation on Biomedical Images

被引:1
|
作者
Bernander, Karl Bengtsson [1 ]
Lindblad, Joakim [1 ]
Strand, Robin [1 ]
Nystrom, Ingela [1 ]
机构
[1] Uppsala Univ, Ctr Image Anal, Uppsala, Sweden
关键词
Deep learning; Training; Convergence;
D O I
10.1007/978-3-031-12053-4_22
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Advances in image segmentation techniques, brought by convolutional neural network (CNN) architectures like U-Net, show promise for tasks such as automated cancer screening. Recently, these methods have been extended to detect different instances of the same class, which could be used to, for example, characterize individual cells in whole-slide images. Still, the amount of data needed and the number of parameters in the network are substantial. To alleviate these problems, we modify a method of semantic instance segmentation to also enforce equivariance to the p4 symmetry group of 90-degree rotations and translations. We perform four experiments on a synthetic dataset of scattered sticks and a subset of the Kaggle 2018 Data Science Bowl, the BBBC038 dataset, consisting of segmented nuclei images. Results indicate that the rotation-equivariant architecture yields similar accuracy as a baseline architecture. Furthermore, we observe that the rotation-equivariant architecture converges faster than the baseline. This is a promising step towards reducing the training time during development of methods based on deep learning.
引用
收藏
页码:283 / 297
页数:15
相关论文
共 50 条
  • [1] Enhanced Rotation-Equivariant U-Net for Nuclear Segmentation
    Chidester, Benjamin
    That-Vinh Ton
    Minh-Triet Tran
    Ma, Jian
    Do, Minh N.
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 1097 - 1104
  • [2] Rotation-equivariant transformer for oriented person detection of overhead fisheye images
    Zhou, You
    Bai, Yong
    Chen, Yongqing
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (01) : 691 - 703
  • [3] Rotation-equivariant transformer for oriented person detection of overhead fisheye images
    You Zhou
    Yong Bai
    Yongqing Chen
    Complex & Intelligent Systems, 2024, 10 : 691 - 703
  • [4] Robust and Rotation-Equivariant Contrastive Learning
    Bai, Gairui
    Xi, Wei
    Hong, Xiaopeng
    Liu, Xinhui
    Yue, Yang
    Zhao, Songwen
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, : 1 - 14
  • [5] CNNs on Surfaces using Rotation-Equivariant Features
    Wiersma, Ruben
    Eisemann, Elmar
    Hildebrandt, Klaus
    ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (04):
  • [6] Learning Rotation-Equivariant Features for Visual Correspondence
    Lee, Jongmin
    Kim, Byungjin
    Kim, Seungwook
    Cho, Minsu
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 21887 - 21897
  • [7] Multi-Oriented Rotation-Equivariant Network for Object Detection on Remote Sensing Images
    Zhu, Kun
    Zhang, Xiaodong
    Chen, Guanzhou
    Li, Xianwei
    Cai, Peihua
    Liao, Puyun
    Wang, Tong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [8] ReDet: A Rotation-equivariant Detector for Aerial Object Detection
    Han, Jiaming
    Ding, Jian
    Xue, Nan
    Xia, Gui-Song
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 2785 - 2794
  • [9] Rotation-Equivariant Convolutional Neural Network Ensembles in Image Processing
    Gao, Liyao
    Li, Hongshan
    Lu, Zheying
    Lin, Guang
    UBICOMP/ISWC'19 ADJUNCT: PROCEEDINGS OF THE 2019 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2019 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS, 2019, : 551 - 557
  • [10] Semantic instance segmentation with discriminative deep supervision for medical images
    Zhou, Sihang
    Nie, Dong
    Adeli, Ehsan
    Wei, Qian
    Ren, Xuhua
    Liu, Xinwang
    Zhu, En
    Yin, Jianping
    Wang, Qian
    Shen, Dinggang
    MEDICAL IMAGE ANALYSIS, 2022, 82