Fragility and cooperative motion in a glass-forming polymer-nanoparticle composite

被引:153
作者
Betancourt, Beatriz A. Pazmino [2 ]
Douglas, Jack F. [1 ]
Starr, Francis W. [2 ]
机构
[1] NIST, Div Polymers, Gaithersburg, MD 20899 USA
[2] Wesleyan Univ, Dept Phys, Middletown, CT 06459 USA
基金
美国国家科学基金会;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; POTENTIAL-ENERGY LANDSCAPE; UNIVERSAL SCALING LAW; TRANSITION TEMPERATURE; HETEROGENEOUS DYNAMICS; TRANSPORT-COEFFICIENTS; STRUCTURAL RELAXATION; PURE LIQUIDS; ENTROPY; NANOCOMPOSITES;
D O I
10.1039/c2sm26800k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer-nanoparticle composites play a vital role in ongoing materials development. The behavior of the glass transition of these materials is important for their processing and applications, and also represents a problem of fundamental physical interest. Changes of the polymer glass transition temperature T-g due to nanoparticles have been fairly well catalogued, but the breadth of the transition and how rapidly transport properties vary with temperature T - termed the fragility m of glass-formation - is comparatively poorly understood. In the present work, we calculate both T-g and m of a model polymer nanocomposite by molecular dynamics simulations. We systematically consider how T-g and m vary both for the material as a whole, as well as locally, for a range of nanoparticle (NP) concentrations and for representative attractive and repulsive polymer-NP interactions. We find large positive and negative changes in T-g and m that can be interpreted in terms of the Adam-Gibbs model of glass-formation, where the scale of the cooperative motion is identified with the scale of string-like cooperative motion. These results provide a molecular perspective of fragility changes due to the addition of NPs and for the physical origin of fragility more generally. We also contrast the behavior along isobaric and isochoric approaches to T-g, since these differing paths can be important to compare with experiments (isobaric) and simulations (very often isochoric). Our findings have practical implications for understanding the properties of nanocomposites and have fundamental significance for understanding the properties glass-forming materials more broadly.
引用
收藏
页码:241 / 254
页数:14
相关论文
共 83 条
[1]   ON TEMPERATURE DEPENDENCE OF COOPERATIVE RELAXATION PROPERTIES IN GLASS-FORMING LIQUIDS [J].
ADAM, G ;
GIBBS, JH .
JOURNAL OF CHEMICAL PHYSICS, 1965, 43 (01) :139-&
[2]   Polymer-specific effects of bulk relaxation and stringlike correlated motion in the dynamics of a supercooled polymer melt [J].
Aichele, M ;
Gebremichael, Y ;
Starr, FW ;
Baschnagel, J ;
Glotzer, SC .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (10) :5290-5304
[3]   Glassy dynamics of simulated polymer melts:: Coherent scattering and van Hove correlation functions Part I:: Dynamics in the β-relaxation regime [J].
Aichele, M ;
Baschnagel, J .
EUROPEAN PHYSICAL JOURNAL E, 2001, 5 (02) :229-243
[4]   Effects of confinement on material behaviour at the nanometre size scale [J].
Alcoutlabi, M ;
McKenna, GB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (15) :R461-R524
[5]  
Allen M. P., 2017, COMPUTER SIMULATION
[6]   Rheology and Microstructure of Polymer Nanocomposite Melts: Variation of Polymer Segment-Surface Interaction [J].
Anderson, Benjamin J. ;
Zukoski, Charles F. .
LANGMUIR, 2010, 26 (11) :8709-8720
[7]   Configurational entropy of hard spheres [J].
Angelani, Luca ;
Foffi, Giuseppe .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (25)
[8]   FORMATION OF GLASSES FROM LIQUIDS AND BIOPOLYMERS [J].
ANGELL, CA .
SCIENCE, 1995, 267 (5206) :1924-1935
[9]   The glass transition and interfacial layer in styrene-butadiene rubber containing silica nanofiller [J].
Arrighi, V ;
McEwen, IJ ;
Qian, H ;
Prieto, MBS .
POLYMER, 2003, 44 (20) :6259-6266
[10]   Nanoparticle polymer composites: Where two small worlds meet [J].
Balazs, Anna C. ;
Emrick, Todd ;
Russell, Thomas P. .
SCIENCE, 2006, 314 (5802) :1107-1110