Nonparaxial wave beams and packets with general astigmatism

被引:24
作者
Kiselev, A. P. [1 ,4 ]
Plachenov, A. B. [2 ]
Chamorro-Posada, P. [3 ]
机构
[1] RAS, VA Steklov Math Inst, St Petersburg Dept, St Petersburg 191027, Russia
[2] Moscow State Tech Univ Radio Engn Elect & Automat, Dept Math, Moscow 119454, Russia
[3] Univ Valladolid, ETSI Telecomunicac, Dept Teoria Senal & Comunicac & Ingn Telemat, E-47011 Valladolid, Spain
[4] St Petersburg State Univ, Fac Phys, St Petersburg 198504, Russia
来源
PHYSICAL REVIEW A | 2012年 / 85卷 / 04期
关键词
LASER-BEAMS; COMPLEX-SOURCE; GAUSSIAN-BEAM; EQUATION; RESONATORS; PULSES;
D O I
10.1103/PhysRevA.85.043835
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present exact solutions of the wave equation involving an arbitrary wave form with a phase closely similar to the general astigmatic phase of paraxial wave optics. Special choices of the wave form allow general astigmatic beamlike and pulselike waves with a Gaussian-type unrestricted localization in space and time. These solutions are generalizations of the known Bateman-type waves obtained from the connection existing between beamlike solutions of the paraxial parabolic equation and relatively undistorted wave solutions of the wave equation. As a technical tool, we present a full description of parametrizations of 2 x 2 symmetric matrices with positive imaginary part, which arise in the theory of Gaussian beams.
引用
收藏
页数:11
相关论文
共 40 条
[1]  
[Anonymous], 1915, MATH ANAL ELECT OPTI
[2]   GAUSSIAN LIGHT BEAMS WITH GENERAL ASTIGMATISM [J].
ARNAUD, JA ;
KOGELNIK, H .
APPLIED OPTICS, 1969, 8 (08) :1687-&
[3]  
BABIC VM, 1991, SPRINGER SERIES WAVE, V4
[4]  
BABIC VM, 1979, BOUNDARY LAYER METHO
[5]  
BABICH VM, 1968, SEM MATH VA STEKLOV, V9, P7
[6]  
Bateman H, 1910, P LOND MATH SOC, V8, P223
[7]   PACKETLIKE SOLUTIONS OF THE HOMOGENEOUS-WAVE EQUATION [J].
BELANGER, PA .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1984, 1 (07) :723-724
[8]   A BIDIRECTIONAL TRAVELING PLANE-WAVE REPRESENTATION OF EXACT-SOLUTIONS OF THE SCALAR WAVE-EQUATION [J].
BESIERIS, IM ;
SHAARAWI, AM ;
ZIOLKOWSKI, RW .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (06) :1254-1269
[9]   FOCUS WAVES MODES IN HOMOGENEOUS MAXWELL EQUATIONS - TRANSVERSE ELECTRIC MODE [J].
BRITTINGHAM, JN .
JOURNAL OF APPLIED PHYSICS, 1983, 54 (03) :1179-1189
[10]  
Courant R., 1962, METHODS MATH PHYS, V2