Renormalization, Isogenies, and Rational Symmetries of Differential Equations

被引:12
作者
Bostan, A. [2 ]
Boukraa, S. [3 ,4 ]
Hassani, S. [5 ]
Maillard, J. -M. [1 ]
Weil, J. -A. [6 ]
Zenine, N. [5 ]
Abarenkova, N. [7 ]
机构
[1] Univ Paris, CNRS, UMR 7600, LPTMC, F-75252 Paris 05, France
[2] INRIA Paris Rocquencourt, F-78153 Le Chesnay, France
[3] Univ Blida, LPTHIRM, Blida 09470, Algeria
[4] Univ Blida, Dept Aeronaut, Blida 09470, Algeria
[5] Ctr Rech Nucl Alger, Algiers 16000, Algeria
[6] Univ Limoges, XLIM, F-87060 Limoges, France
[7] VA Steklov Math Inst, St Petersburg Dept, St Petersburg 191023, Russia
关键词
ISING-MODEL SUSCEPTIBILITY; SINGULARITIES; RAMANUJAN; INTEGRALS; CHI((3)); FUCHS;
D O I
10.1155/2010/941560
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give an example of infinite-order rational transformation that leaves a linear differential equation covariant. This example can be seen as a nontrivial but still simple illustration of an exact representation of the renormalization group.
引用
收藏
页数:44
相关论文
共 47 条
[21]   A PAIR OF CALABI-YAU MANIFOLDS AS AN EXACTLY SOLUBLE SUPERCONFORMAL THEORY [J].
CANDELAS, P ;
DELAOSSA, XC ;
GREEN, PS ;
PARKES, L .
NUCLEAR PHYSICS B, 1991, 359 (01) :21-74
[22]   Ramanujan's modular equations and Atkin-Lehner involutions [J].
Chan, HH ;
Lang, ML .
ISRAEL JOURNAL OF MATHEMATICS, 1998, 103 (1) :1-16
[23]  
DELAMOTTE B, 2004, PHYS REV B, V69
[24]  
Doran C., 2000, CRM Proc. Lecture Notes, V24, P257
[25]   Picard-Fuchs uniformization and modularity of the mirror map [J].
Doran, CF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 212 (03) :625-647
[26]  
Ebrahimi-Fard K., 1992, PHYS LETT B, V281, P315
[27]   A noncommutative Bohnenblust-Spitzer identity for Rota-Baxter algebras solves Bogoliubov's recursion [J].
Ebrahimi-Fard, Kurusch ;
Manchon, Dominique ;
Patras, Frederic .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2009, 3 (02) :181-222
[28]   RANDOM-FIELDS, RANDOM ANISOTROPIES, NONLINEAR SIGMA-MODELS, AND DIMENSIONAL REDUCTION [J].
FISHER, DS .
PHYSICAL REVIEW B, 1985, 31 (11) :7233-7251
[29]   Renormalization group theory: Its basis and formulation in statistical physics [J].
Fisher, ME .
REVIEWS OF MODERN PHYSICS, 1998, 70 (02) :653-681
[30]   ON THE INTEGRALITY OF THE TAYLOR COEFFICIENTS OF MIRROR MAPS [J].
Krattenthaler, Christian ;
Rivoal, Tanguy .
DUKE MATHEMATICAL JOURNAL, 2010, 151 (02) :175-218