Renormalization, Isogenies, and Rational Symmetries of Differential Equations

被引:12
作者
Bostan, A. [2 ]
Boukraa, S. [3 ,4 ]
Hassani, S. [5 ]
Maillard, J. -M. [1 ]
Weil, J. -A. [6 ]
Zenine, N. [5 ]
Abarenkova, N. [7 ]
机构
[1] Univ Paris, CNRS, UMR 7600, LPTMC, F-75252 Paris 05, France
[2] INRIA Paris Rocquencourt, F-78153 Le Chesnay, France
[3] Univ Blida, LPTHIRM, Blida 09470, Algeria
[4] Univ Blida, Dept Aeronaut, Blida 09470, Algeria
[5] Ctr Rech Nucl Alger, Algiers 16000, Algeria
[6] Univ Limoges, XLIM, F-87060 Limoges, France
[7] VA Steklov Math Inst, St Petersburg Dept, St Petersburg 191023, Russia
关键词
ISING-MODEL SUSCEPTIBILITY; SINGULARITIES; RAMANUJAN; INTEGRALS; CHI((3)); FUCHS;
D O I
10.1155/2010/941560
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give an example of infinite-order rational transformation that leaves a linear differential equation covariant. This example can be seen as a nontrivial but still simple illustration of an exact representation of the renormalization group.
引用
收藏
页数:44
相关论文
共 47 条
[1]   Growth-complexity spectrum of some discrete dynamical systems [J].
Abarenkova, N ;
d'Auriac, JCA ;
Boukraa, S ;
Maillard, JM .
PHYSICA D, 1999, 130 (1-2) :27-42
[2]  
ANDRE Y., 1994, S MATH, VXXXVII, P1
[3]  
Andre Y., 2003, Journal de Theorie des Nombres de Bordeaux, V15, P1
[4]  
Andre Yves, 1989, ASPECTS MATH E, VE13
[5]  
[Anonymous], 1944, Ordinary Differential Equations
[6]   QUASI INTEGRABILITY OF THE 16-VERTEX MODEL [J].
BELLON, MP ;
MAILLARD, JM ;
VIALLET, CM .
PHYSICS LETTERS B, 1992, 281 (3-4) :315-319
[7]   Non-perturbative renormalization flow in quantum field theory and statistical physics [J].
Berges, J ;
Tetradis, N ;
Wetterich, C .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 363 (4-6) :223-386
[8]   Ramanujan and the modular j-invariant [J].
Berndt, BC ;
Chan, HH .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1999, 42 (04) :427-440
[9]  
Bostan A., 2009, J PHYS A, V42
[10]  
Bostan A., 2009, J PHYS A, V42