On the Yang-Baxter equation and left nilpotent left braces

被引:27
作者
Cedo, Ferran [1 ]
Gateva-Ivanova, Tatiana [2 ,3 ]
Smoktunowicz, Agata [4 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[2] Amer Univ Bulgaria, Blagoevgrad 2700, Bulgaria
[3] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
[4] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Kings Bldg, Edinburgh EH9 3JZ, Midlothian, Scotland
关键词
SEMIGROUPS;
D O I
10.1016/j.jpaa.2016.07.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study non-degenerate involutive set-theoretic solutions (X, r) of the Yang-Baxter equation, we call them solutions. We prove that the structure group G(X, r) of a finite non-trivial solution (X, r) cannot be an Engel group. It is known that the structure group G(X, r) of a finite multipermutation solution (X, r) is a poly-Z group, thus our result gives a rich source of examples of braided groups and left braces G(X, r) which are poly-Z groups but not Engel groups. We find an explicit relation between the multipermutation level of a left brace and the length of the radical chain A((n+1)) = A((n)) * A introduced by Rump. We also show that a finite solution of the Yang-Baxter equation can be embedded in a convenient way into a finite left brace, or equivalently into a finite involutive braided group. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:751 / 756
页数:6
相关论文
共 9 条
  • [1] Braces and the Yang-Baxter Equation
    Cedo, Ferran
    Jespers, Eric
    Okninski, Jan
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 327 (01) : 101 - 116
  • [2] Set-theoretical solutions to the quantum Yang-Baxter equation
    Etingof, P
    Schedler, T
    Soloviev, A
    [J]. DUKE MATHEMATICAL JOURNAL, 1999, 100 (02) : 169 - 209
  • [3] Semigroups of I-type
    Gateva-Ivanova, T
    Van den Bergh, M
    [J]. JOURNAL OF ALGEBRA, 1998, 206 (01) : 97 - 112
  • [4] Gateva-Ivanova Tatiana, ARXIV150702602MATHQA
  • [5] Binomial semigroups
    Jespers, E
    Okninski, J
    [J]. JOURNAL OF ALGEBRA, 1998, 202 (01) : 250 - 275
  • [6] Passman D. S., 1977, Pure and Applied Mathe- matics
  • [7] Robinson D. J. S., 1982, GRAD TEXTS MATH, V80
  • [8] Braces, radical rings, and the quantum Yang-Baxter equation
    Rump, Wolfgang
    [J]. JOURNAL OF ALGEBRA, 2007, 307 (01) : 153 - 170
  • [9] Takeuchi M., 2001, Banach Cent. Publ., V61, P305