Parallel Changes in Intracellular Water Volume and pH Induced by NH3/NH4+ Exposure in Single Neuroblastoma Cells

被引:11
作者
Blanco, Victor M. [1 ]
Marquez, Martin S. [1 ]
Alvarez-Leefmans, Francisco J. [1 ]
机构
[1] Wright State Univ, Dept Pharmacol & Toxicol, Boonshoft Sch Med, Dayton, OH 45435 USA
关键词
Ammonium; Ammonia; Isosmotic cell swelling; Isosmotic cell shrinkage; Isosmotic regulatory volume decrease; Isosmotic regulatory volume increase; Hyperammonemia; Brain edema; ACUTE LIVER-FAILURE; H+ BUFFERING POWER; HEPATIC-ENCEPHALOPATHY; GLUTAMINE-SYNTHETASE; CALIBRATING BCECF; HIGH K+/NIGERICIN; ARTERIAL AMMONIA; NA+/H+ EXCHANGE; BRAIN EDEMA; PERMEABILITY;
D O I
10.1159/000356624
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Background: Increased blood levels of ammonia (NH3) and ammonium (NH4+), i. e. hyperammonemia, leads to cellular brain edema in humans with acute liver failure. The pathophysiology of this edema is poorly understood. This is partly due to incomplete understanding of the osmotic effects of the pair NH3/NH4+ at the cellular and molecular levels. Cell exposure to solutions containing NH3/NH4+ elicits changes in intracellular pH (pH(i)), which can in turn affect cell water volume (CWV) by activating transport mechanisms that produce net gain or loss of solutes and water. The occurrence of CWV changes caused by NH3/NH4+ has long been suspected, but the mechanisms, magnitude and kinetics of these changes remain unknown. Methods: Using fluorescence imaging microscopy we measured, in real time, parallel changes in pH(i) and CWV caused by brief exposure to NH3/NH4+ of single cells (N1E-115 neuroblastoma or NG-108 neuroblastoma X glioma) loaded with the fluorescent indicator BCECF. Changes in CWV were measured by exciting BCECF at its intracellular isosbestic wavelength (similar to 438 nm), and pHi was measured ratiometrically. Results: Brief exposure to isosmotic solutions (i. e. having the same osmolality as that of control solutions) containing NH4Cl (0.5-30 mM) resulted in a rapid, dose-dependent swelling, followed by isosmotic regulatory volume decrease (iRVD). NH4Cl solutions in which either extracellular [NH3] or [NH4+] was kept constant while the other was changed by varying the pH of the solution, demonstrated that [NH3] o rather than [NH4+](o) is the main determinant of the NH4Cl-induced swelling. The iRVD response was sensitive to the anion channel blocker NPPB, and partly dependent on external Ca2+. Upon removal of NH4Cl, cells shrank and displayed isosmotic regulatory volume increase (iRVI). Regulatory volume responses could not be activated by comparable CWV changes produced by anisosmotic solutions, suggesting that membrane stretch or contraction by themselves are not sufficient to trigger these responses. Inhibition of glutamine synthetase partially blocked the NH4Cl- induced swelling. Conclusions: A quantitative description of the osmotic changes produced by exposure to NH3/NH4+ in single neurons and glial cells shows that 35 to 45% of the initial cell swelling can be explained by intracellular accumulation of NH4+ due to rapid permeation and protonation of NH3. Another 23% of the swelling can be accounted for by rapid glutamine accumulation. The results are discussed in terms of basic cell physiology and their potential relevance to the pathophysiology of hyperammonemic cellular brain edema.
引用
收藏
页码:57 / 76
页数:20
相关论文
共 62 条
[11]   Brain edema in acute liver failure [J].
Blei, Andres T. .
CRITICAL CARE CLINICS, 2008, 24 (01) :99-+
[12]   Brain edema in acute liver failure: Can it be prevented? Can it be treated? [J].
Blei, Andres T. .
JOURNAL OF HEPATOLOGY, 2007, 46 (04) :564-569
[13]   ATP dependence of the ICl,swell channel varies with rate of cell swelling -: Evidence for two modes of channel activation [J].
Bond, T ;
Basavappa, S ;
Christensen, M ;
Strange, K .
JOURNAL OF GENERAL PHYSIOLOGY, 1999, 113 (03) :441-456
[14]   INTRACELLULAR PH TRANSIENTS IN SQUID GIANT-AXONS CAUSED BY CO2, NH3, AND METABOLIC-INHIBITORS [J].
BORON, WF ;
DEWEER, P .
JOURNAL OF GENERAL PHYSIOLOGY, 1976, 67 (01) :91-112
[15]   Inadequacy of high K+/nigericin for calibrating BCECF .2. Intracellular pH dependence of the correction [J].
Boyarsky, G ;
Hanssen, C ;
Clyne, LA .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1996, 271 (04) :C1146-C1156
[16]   Inadequacy of high K+/nigericin for calibrating BCECF .1. Estimating steady-state intracellular pH [J].
Boyarsky, G ;
Hanssen, C ;
Clyne, LA .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1996, 271 (04) :C1131-C1145
[17]  
BRUSILOW SW, 1986, NEW ENGL J MED, V314, P786
[18]   Current pathogenetic aspects of hepatic encephalopathy and noncirrhotic hyperammonemic encephalopathy [J].
Cichoz-Lach, Halina ;
Michalak, Agata .
WORLD JOURNAL OF GASTROENTEROLOGY, 2013, 19 (01) :26-34
[19]   Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration [J].
Clemmesen, JO ;
Larsen, FS ;
Kondrup, J ;
Hansen, BA ;
Ott, P .
HEPATOLOGY, 1999, 29 (03) :648-653
[20]  
Conn HO, 1994, HEPATIC ENCEPHALOPAT