A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part II: Intersecting interfaces

被引:23
作者
Annavarapu, Chandrasekhar [1 ,4 ]
Hautefeuille, Martin [2 ]
Dolbow, John E. [3 ]
机构
[1] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94550 USA
[2] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA
[3] Duke Univ, Dept Civil & Environm Engn, Durham, NC 27708 USA
[4] Duke Univ, Durham, NC 27706 USA
关键词
Frictional contact; Grain-boundary sliding; Junctions; Nitsche; Polycrystalline; X-FEM; POLYCRYSTALLINE BRITTLE MATERIALS; GRAIN LEVEL MODEL; COMPUTATIONAL APPROACH; FAILURE INITIATION; X-FEM; BOUNDARY; SIZE; FORMULATION; MICROSTRUCTURES; RESTORATION;
D O I
10.1016/j.cma.2013.08.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We extend the weighted Nitsche's method proposed in the first part of this study to include multiple intersecting embedded interfaces. These intersections arise either inside a computational domain - where two internal interfaces intersect; or on the boundary of the computational domain - where an internal interface intersects with the external boundary. We propose a variational treatment of both the interfacial kinematics and the external Dirichlet constraints within Nitsche's framework. We modify the numerical analysis to account for these intersections and provide an explicit expression for the weights and the method parameters that arise in the Nitsche variational form in the presence of junctions. Finally, we demonstrate the performance of the method for both perfectly-tied interfaces and perfectly-plastic sliding interfaces through several benchmark examples. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:318 / 341
页数:24
相关论文
共 41 条
[1]  
Annavarapu C., 2013, COMPUT METHODS APPL, DOI DOI 10.1016/J.CMA.2013.09.002>
[2]   A robust Nitsche's formulation for interface problems [J].
Annavarapu, Chandrasekhar ;
Hautefeuille, Martin ;
Dolbow, John E. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 225 :44-54
[3]   Generalized finite element enrichment functions for discontinuous gradient fields [J].
Aragon, Alejandro M. ;
Duarte, C. Armando ;
Geubelle, Philippe H. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 82 (02) :242-268
[4]   THE FINITE-ELEMENT METHOD WITH LAGRANGE MULTIPLIERS ON THE BOUNDARY - CIRCUMVENTING THE BABUSKA-BREZZI CONDITION [J].
BARBOSA, HJC ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1991, 85 (01) :109-128
[5]  
Bechet E., 2012, NUMER METHODS ENG, V78, P931
[6]   A three-dimensional grain boundary formulation for microstructural modeling of polycrystalline materials [J].
Benedetti, I. ;
Aliabadi, M. H. .
COMPUTATIONAL MATERIALS SCIENCE, 2013, 67 :249-260
[7]  
Bhat H.S., 2007, J GEOPHYS RES SOLID, V112
[8]   Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method [J].
Burman, Erik ;
Hansbo, Peter .
APPLIED NUMERICAL MATHEMATICS, 2012, 62 (04) :328-341
[9]   A Nitsche-extended finite element method for earthquake rupture on complex fault systems [J].
Coon, E. T. ;
Shaw, B. E. ;
Spiegelman, M. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (41-44) :2859-2870
[10]  
Daux C, 2000, INT J NUMER METH ENG, V48, P1741, DOI 10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO