Multiplicity of nonnegative solutions for quasilinear Schrodinger equations

被引:9
作者
Miyagaki, Olimpio H. [1 ]
Moreira, Sandra Im. [2 ]
Pucci, Patrizia [3 ]
机构
[1] Univ Fed Juiz de Fora, Dept Matemat, BR-36036330 Juiz De Fora, MG, Brazil
[2] Univ Estadual Maranhao, Dept Matemat & Informat, BR-65055900 Sao Luis, MA, Brazil
[3] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
关键词
Schrodinger operators; Variational methods; Supercritical exponents; ELLIPTIC-EQUATIONS; SOLITON-SOLUTIONS; CRITICAL GROWTH; R-N; PERTURBATION METHOD; CRITICAL EXPONENT; EXISTENCE; NONLINEARITIES; SIGN; INDEFINITE;
D O I
10.1016/j.jmaa.2015.09.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with existence and multiplicity of nonnegative weak solutions for quasilinear Schrodinger equations involving nonlinearities with possibly supercritical growth at infinity and indefinite sign. An appropriate change of variables reduces the quasilinear problem into a semilinear one. Variational and sub- super-methods are applied in order to obtain the main results of the paper. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:939 / 955
页数:17
相关论文
共 24 条
[1]   Elliptic problems with nonlinearities indefinite in sign [J].
Alama, S ;
Tarantello, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 141 (01) :159-215
[2]  
[Anonymous], 2003, Adv. Differential Equations
[3]   Existence of entire solutions for a class of quasilinear elliptic equations [J].
Autuori, Giuseppina ;
Pucci, Patrizia .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (03) :977-1009
[4]   Soliton solutions for quasilinear Schrodinger equations with critical growth [J].
Bezerra do O, Joao M. ;
Miyagaki, Olimpio H. ;
Soares, Sergio H. M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (04) :722-744
[5]   EXISTENCE AND CONCENTRATION OF SOLITARY WAVES FOR A CLASS OF QUASILINEAR SCHRODINGER EQUATIONS [J].
Cassani, Daniele ;
do O, Joao Marcos ;
Moameni, Abbas .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (02) :281-306
[6]   Solutions for a quasilinear Schrodinger equation: a dual approach [J].
Colin, M ;
Jeanjean, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (02) :213-226
[7]   NONNEGATIVE SOLUTIONS FOR INDEFINITE SUBLINEAR ELLIPTIC PROBLEMS [J].
De Paiva, Francisco Odair .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2012, 14 (03)
[8]   QUASILINEAR SCHRODINGER EQUATIONS INVOLVING CONCAVE AND CONVEX NONLINEARITIES [J].
do O, Joao Marcos ;
Severo, Uberlandio .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (02) :621-644
[9]   Existence and concentration of positive solutions for a quasilinear equation in RN [J].
Gloss, Elisandra .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (02) :465-484
[10]   Multiple Sign-Changing Solutions for Quasilinear Elliptic Equations via Perturbation Method [J].
Liu, Jia-Quan ;
Liu, Xiang-Qing ;
Wang, Zhi-Qiang .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (12) :2216-2239