Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering

被引:56
|
作者
Leite Lima, Paulo Autran [1 ]
Resende, Cristiane Xavier [1 ]
de Almeida Soares, Gloria Dulce [2 ]
Anselme, Karine [3 ]
Almeida, Luis Eduardo [1 ]
机构
[1] Univ Fed Sergipe, Dept Ciencias Mat, BR-49000100 Sao Cristovao, Sergipe, Brazil
[2] Univ Fed Rio de Janeiro, Ilha Fundao, Dept Ciencias Mat, BR-21900000 Rio De Janeiro, Brazil
[3] CNRS LRC7228, IS2M, F-68054 Mulhouse, France
来源
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2013年 / 33卷 / 06期
关键词
Chitosan; Fibroin; Hydroxyapatite; 3D-Scaffolds; SaOs-2; cells; SILK FIBROIN; MECHANICAL-PROPERTIES; SCAFFOLDS; PHOSPHATE; FILMS; BIOCOMPATIBILITY; MICROSTRUCTURE; PROLIFERATION; ATTACHMENT; BEHAVIOR;
D O I
10.1016/j.msec.2013.04.026
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
This work describes the preparation and characterization of porous 3D-scaffolds based on chitosan (CHI), chitosan/silk fibroin (CHI/SF) and chitosan/silk fibroin/hydroxyapatite (CHI/SF/HA) by freeze drying. The biomaterials were characterized by X-ray diffraction, attenuated total reflection Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy and energy dispersive spectroscopy. In addition, studies of porosity, pore size, contact angle and biological response of SaOs-2osteoblastic cells were performed. The CHI scaffolds have a porosity of 94.2 +/- 0.9%, which is statistically higher than the one presented by CHI/SF/HA scaffolds, 89.7 +/- 2.6%. Although all scaffolds were able to promote adhesion, growth and maintenance of osteogenic differentiation of SaOs-2 cells, the new 3D-scaffold based on CHI/SF/HA showed a significantly higher cell growth at 7 days and 21 days and the level of alkaline phosphatase at 14 and 21 days was statistically superior compared to other tested materials. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:3389 / 3395
页数:7
相关论文
共 50 条
  • [1] Preparation, Characterization, and Implantation of Porous Fibroin/Hydroxyapatite Scaffolds for Bone Tissue Engineering
    Xu, Shui
    Xia, Ju
    Wu, Tingfang
    Gao, Baodong
    Zhang, Yan
    Wang, Xin
    Cheng, Guotao
    Zhu, Yong
    SCIENCE OF ADVANCED MATERIALS, 2018, 10 (11) : 1601 - 1607
  • [2] Manufacturing and characterization of 3-D hydroxyapatite bone tissue engineering scaffolds
    Chu, TMG
    Hollister, SJ
    Halloran, JW
    Feinberg, SE
    Orton, DG
    REPARATIVE MEDICINE: GROWING TISSUES AND ORGANS, 2002, 961 : 114 - 117
  • [3] Chitosan-Collagen hybrid 3D-scaffolds as potential biomaterials for tissue engineering
    Cubero-Mora, Priscilla
    Alfaro-Viquez, Emilia
    Esquivel-Alvarado, Daniel
    Esquivel-Alfaro, Marianelly
    Madrigal-Carballo, Sergio
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [4] Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering
    Kim, Hye-Lee
    Jung, Gil-Yong
    Yoon, Jun-Ho
    Han, Jung-Suk
    Park, Yoon-Jeong
    Kim, Do-Gyoon
    Zhang, Miqin
    Kim, Dae-Joon
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2015, 54 : 20 - 25
  • [5] Preparation and in vitro characterization of biomorphic silk fibroin scaffolds for bone tissue engineering
    Qian, Junmin
    Suo, Aili
    Jin, Xinxia
    Xu, Weijun
    Xu, Minghui
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2014, 102 (09) : 2961 - 2971
  • [6] Preparation and characterization of polycaprolactone/chitosan-g-polycaprolactone/hydroxyapatite electrospun nanocomposite scaffolds for bone tissue engineering
    Sani, Iman Shirzaei
    Rezaei, Mostafa
    Khoshfetrat, Ali Baradar
    Razzaghi, Donya
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 182 : 1638 - 1649
  • [7] 3D Printing Silk Fibroin/Hydroxyapatite/Sodium Alginate Composite Scaffolds for Bone Tissue Engineering
    Zhenyu Xu
    Ke Li
    Kui Zhou
    Shuiyuan Li
    Hongwei Chen
    Jiaqi Zeng
    Rugang Hu
    Fibers and Polymers, 2023, 24 : 275 - 283
  • [8] Preparation of porous hydroxyapatite scaffolds for bone tissue engineering
    Min, Sang-Ho
    Jin, Hyeong-Ho
    Park, Hoy-Yul
    Park, Ik-Min
    Park, Hong-Chae
    Yoon, Seog-Young
    ECO-MATERIALS PROCESSING & DESIGN VII, 2006, 510-511 : 754 - 757
  • [9] 3D Printing Silk Fibroin/Hydroxyapatite/Sodium Alginate Composite Scaffolds for Bone Tissue Engineering
    Xu, Zhenyu
    Li, Ke
    Zhou, Kui
    Li, Shuiyuan
    Chen, Hongwei
    Zeng, Jiaqi
    Hu, Rugang
    FIBERS AND POLYMERS, 2023, 24 (01) : 275 - 283
  • [10] Preparation and characterization of hydroxyapatite/bacterial cellulose nanocomposite scaffolds for bone tissue engineering
    Jiang, Hongjiang
    Wang, Yulin
    Jia, Shiru
    Huang, Yuan
    He, Fang
    Wan, Yizao
    BIOCERAMICS, VOL 19, PTS 1 AND 2, 2007, 330-332 : 923 - +