Galerkin finite element method for the Rosenau-RLW equation

被引:73
作者
Atouani, Noureddine [1 ]
Omrani, Khaled [1 ]
机构
[1] Inst Super Sci Appl & Technol Sousse, Sousse Ibn Khaldoun 4003, Tunisia
关键词
Rosenau-RLW equation; Existence; Uniqueness; Finite element method; Crank-Nicolson scheme; Error estimates; SYSTEMS;
D O I
10.1016/j.camwa.2013.04.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Finite element Galerkin solutions for the Rosenau-RLW (RRLW) equation are considered. The existence and uniqueness of the weak solution are shown and the semidiscrete Galerkin scheme is studied using appropriate projections. For a second order accuracy in time, we propose the Galerkin-Crank-Nicolson fully discrete method. We also prove the convergence of the extrapolated Crank-Nicolson scheme. Finally, some numerical experiments are given to demonstrate the validity and accuracy of our method. Published by Elsevier Ltd
引用
收藏
页码:289 / 303
页数:15
相关论文
共 18 条
[1]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[2]   INITIAL-VALUE PROBLEM FOR KORTEWEG-DEVRIES EQUATION [J].
BONA, JL ;
SMITH, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1287) :555-601
[3]  
BROWDER F E., 1965, P S APPL MATH, V17, P24
[4]  
Chung S., 1998, Appl Anal, V69, P149, DOI [10.1080/00036819808840652, DOI 10.1080/00036819808840652]
[5]  
Chung S. K., 1994, Appl. Anal., V54, P39
[6]  
Chunk SK, 2001, Appl. Anal., V77, P351, DOI DOI 10.1080/00036810108840914
[7]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[8]   Two Conservative Difference Schemes for the Generalized Rosenau Equation [J].
Hu, Jinsong ;
Zheng, Kelong .
BOUNDARY VALUE PROBLEMS, 2010,
[9]   EXISTENCE AND UNIQUENESS FOR PERIODIC-SOLUTIONS OF BENJAMIN-BONA-MAHONY EQUATION [J].
MEDEIROS, LA ;
MENZALA, GP .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1977, 8 (05) :792-799
[10]   WEAK SOLUTIONS FOR A NONLINEAR DISPERSIVE EQUATION [J].
MEDEIROS, LA ;
MIRANDA, MM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 59 (03) :432-441