Some remarks on the complex &ITJ&IT-symmetric eigenproblem

被引:11
作者
Benner, Peter [1 ]
Fassbender, Heike [2 ]
Yang, Chao [3 ]
机构
[1] Max Planck Inst Dynam Complex Tech Syst, Sandtorstr 1, D-39106 Magdeburg, Germany
[2] TU Braunschweig, AG Numer, Univ Pl 2, D-38106 Braunschweig, Germany
[3] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
关键词
Complex J-symmetric eigenproblem; Real Hamiltonian matrix; Complex Hamiltonian matrix; Structure-preserving; SR algorithm; EIGENVALUE PROBLEM; HAMILTONIAN MATRICES; ALGORITHMS; FACTORIZATIONS; DECOMPOSITION; CONVERGENCE;
D O I
10.1016/j.laa.2018.01.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The eigenproblem for complex J-symmetric matrices H-C = [GRAPHICS], A, C = C-T, D = D-T is an element of C-nxn is considered. A proof of the existence of a transformation to the complex J-symmetric Schur form proposed in [21] is given. The complex symplectic unitary QR decomposition and the complex symplectic SR decomposition are discussed. It is shown that a QR-like method based on the complex symplectic unitary QR decomposition is not feasible here. A complex symplectic SR algorithm is presented which can be implemented such that one step of the SR algorithm can be carried out in O(n) arithmetic operations. Based on this, a complex symplectic Lanczos method can be derived. Moreover, it is discussed how the 2n x 2n complex J-symmetric matrix H-C can be embedded in a 4n x 4n real Hamiltonian matrix. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:407 / 442
页数:36
相关论文
共 25 条
[1]   ON HAMILTONIAN AND SYMPLECTIC HESSENBERG FORMS [J].
AMMAR, G ;
MEHRMANN, V .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 149 :55-72
[2]  
[Anonymous], NUMERICAL ALGEBRA MA
[3]  
[Anonymous], 2013, MATRIX COMPUTATIONS
[4]  
[Anonymous], 2003, ELECTRON J LINEAR AL, DOI DOI 10.13001/1081-3810.1101
[5]   An implicitly restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem [J].
Benner, P ;
Fassbender, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 263 :75-111
[6]   A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils [J].
Benner, P ;
Mehrmann, V ;
Xu, HG .
NUMERISCHE MATHEMATIK, 1998, 78 (03) :329-358
[7]   A new method for computing the stable invariant subspace of a real Hamiltonian matrix [J].
Benner, P ;
Mehrmann, V ;
Xu, HG .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 86 (01) :17-43
[8]  
Benner P., 1999, ELECTRON T NUMER ANA, V8, P115
[9]   Algorithm 854: Fortran 77 subroutines for computing the eigenvalues of Hamiltonian matrices II [J].
Benner, Peter ;
Kressner, Daniel .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2006, 32 (02) :352-373
[10]   A reduced basis approach for calculation of the Bethe-Salpeter excitation energies by using low-rank tensor factorisations [J].
Benner, Peter ;
Khoromskaia, Venera ;
Khoromskij, Boris N. .
MOLECULAR PHYSICS, 2016, 114 (7-8) :1148-1161