An Improved Fuzzy C-means Clustering Algorithm for Transformer Fault

被引:0
|
作者
Tang, Songping [1 ]
Peng, Gang [1 ]
Zhong, Zhenxin [1 ]
机构
[1] Guangdong Power Grid Corp, Huizhou Power Supply Bur, Huizhou 516000, Guangdong, Peoples R China
来源
2016 CHINA INTERNATIONAL CONFERENCE ON ELECTRICITY DISTRIBUTION (CICED) | 2016年
关键词
Fault diagnosis; Fuzzy C-means clustering; Outlier factor; Penalty factor; Three-ratio method;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Normal operation of the transformer is an important guarantee of the reliability of the power system. The transformer fault diagnosis is an important basis for transformer maintenance. Three-ratio method is widely used in oil-immersed transformer fault diagnosis, however the encoded value is too severe to correspond to the type of failure. FCM (Fuzzy C-means clustering) algorithm is introduced to solve this problem, and its performance determines the correct rate of transformer fault diagnosis. This paper focuses on the defects of FCM algorithm and in view of diagnostic data characteristic of three-ratio method, the FCM algorithm is optimized in two ways. Firstly, the introduction of outlier factor detection algorithm weakens the adverse effects caused by outlier factors in the dataset during clustering process. Secondly, the penalty factor in the objective function of FCM algorithm is used to maximize the difference of cluster object and cluster center. The experiments are performed on multiple sets of samples of transformer fault diagnostic from IRIS standard data sets. The results verify that the improved FCM algorithm for transformer fault diagnosis has a higher correct rate than traditional methods.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] A Possibilistic Multivariate Fuzzy c-Means Clustering Algorithm
    Himmelspach, Ludmila
    Conrad, Stefan
    SCALABLE UNCERTAINTY MANAGEMENT, SUM 2016, 2016, 9858 : 338 - 344
  • [42] FCM - THE FUZZY C-MEANS CLUSTERING-ALGORITHM
    BEZDEK, JC
    EHRLICH, R
    FULL, W
    COMPUTERS & GEOSCIENCES, 1984, 10 (2-3) : 191 - 203
  • [43] Improvements to the relational fuzzy c-means clustering algorithm
    Khalilia, Mohammed A.
    Bezdek, James
    Popescu, Mihail
    Keller, James M.
    PATTERN RECOGNITION, 2014, 47 (12) : 3920 - 3930
  • [44] FCM: THE FUZZY c-MEANS CLUSTERING ALGORITHM.
    Bezdek, James C.
    Ehrlich, Robert
    Full, William
    1600, (10): : 2 - 3
  • [45] Improvement and optimization of a Fuzzy C-Means clustering algorithm
    Shen, Y
    Shi, H
    Zhang, JQ
    IMTC/2001: PROCEEDINGS OF THE 18TH IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-3: REDISCOVERING MEASUREMENT IN THE AGE OF INFORMATICS, 2001, : 1430 - 1433
  • [46] A New Intuitionistic Fuzzy c-means Clustering Algorithm
    Jiang, Hui
    Zhou, Xiaoguang
    Feng, Baisheng
    Zhang, Mingdong
    PROCEEDINGS 2013 INTERNATIONAL CONFERENCE ON MECHATRONIC SCIENCES, ELECTRIC ENGINEERING AND COMPUTER (MEC), 2013, : 1116 - 1119
  • [47] A Weight Possibilistic Fuzzy C-Means Clustering Algorithm
    Chen, Jiashun
    Zhang, Hao
    Pi, Dechang
    Kantardzic, Mehmed
    Yin, Qi
    Liu, Xin
    SCIENTIFIC PROGRAMMING, 2021, 2021
  • [48] Fuzzy c-Means Clustering Algorithm With Two Layers
    谢维信
    刘健庄
    ChineseScienceBulletin, 1993, (07) : 608 - 612
  • [49] A Improved Clustering Analysis Method Based on Fuzzy C-Means Algorithm by Adding PSO Algorithm
    Pang, Liang
    Xiao, Kai
    Liang, Alei
    Guan, Haibing
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT I, 2012, 7208 : 231 - 242
  • [50] A new fuzzy relational clustering algorithm based on the fuzzy C-means algorithm
    Corsini, P
    Lazzerini, B
    Marcelloni, F
    SOFT COMPUTING, 2005, 9 (06) : 439 - 447