Estimation of data-specific constitutive exons with RNA-Seq data

被引:4
|
作者
Patrick, Ellis [1 ,2 ]
Buckley, Michael [2 ]
Yang, Yee Hwa [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[2] CSIRO Math & Informat Sci, Clayton, Vic 3168, Australia
来源
BMC BIOINFORMATICS | 2013年 / 14卷
基金
澳大利亚研究理事会;
关键词
DIFFERENTIAL EXPRESSION ANALYSIS; PRE-MESSENGER-RNA; GENE-EXPRESSION; NORMALIZATION; MECHANISMS; SEQUENCES; TOPHAT; TOOL;
D O I
10.1186/1471-2105-14-31
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: RNA-Seq has the potential to answer many diverse and interesting questions about the inner workings of cells. Estimating changes in the overall transcription of a gene is not straightforward. Changes in overall gene transcription can easily be confounded with changes in exon usage which alter the lengths of transcripts produced by a gene. Measuring the expression of constitutive exons-exons which are consistently conserved after splicing-offers an unbiased estimation of the overall transcription of a gene. Results: We propose a clustering-based method, exClust, for estimating the exons that are consistently conserved after splicing in a given data set. These are considered as the exons which are "constitutive" in this data. The method utilises information from both annotation and the dataset of interest. The method is implemented in an openly available R function package, sydSeq. Conclusion: When used on two real datasets exClust includes more than three times as many reads as the standard UI method, and improves concordance with qRT-PCR data. When compared to other methods, our method is shown to produce robust estimates of overall gene transcription.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Modeling Exon-Specific Bias Distribution Improves the Analysis of RNA-Seq Data
    Liu, Xuejun
    Zhang, Li
    Chen, Songcan
    PLOS ONE, 2015, 10 (10):
  • [2] Model-based clustering for RNA-seq data
    Si, Yaqing
    Liu, Peng
    Li, Pinghua
    Brutnell, Thomas P.
    BIOINFORMATICS, 2014, 30 (02) : 197 - 205
  • [3] An integrative method to normalize RNA-Seq data
    Cyril Filloux
    Meersseman Cédric
    Philippe Romain
    Forestier Lionel
    Klopp Christophe
    Rocha Dominique
    Maftah Abderrahman
    Petit Daniel
    BMC Bioinformatics, 15
  • [4] RNASeqGUI: a GUI for analysing RNA-Seq data
    Russo, Francesco
    Angelini, Claudia
    BIOINFORMATICS, 2014, 30 (17) : 2514 - 2516
  • [5] Computational analysis of bacterial RNA-Seq data
    McClure, Ryan
    Balasubramanian, Divya
    Sun, Yan
    Bobrovskyy, Maksym
    Sumby, Paul
    Genco, Caroline A.
    Vanderpool, Carin K.
    Tjaden, Brian
    NUCLEIC ACIDS RESEARCH, 2013, 41 (14) : e140
  • [6] An integrative method to normalize RNA-Seq data
    Filloux, Cyril
    Cedric, Meersseman
    Romain, Philippe
    Lionel, Forestier
    Christophe, Klopp
    Dominique, Rocha
    Abderrahman, Maftah
    Daniel, Petit
    BMC BIOINFORMATICS, 2014, 15
  • [7] An Efficient and Flexible Method for Deconvoluting Bulk RNA-Seq Data with Single-Cell RNA-Seq Data
    Sun, Xifang
    Sun, Shiquan
    Yang, Sheng
    CELLS, 2019, 8 (10)
  • [8] MGMR: leveraging RNA-Seq population data to optimize expression estimation
    Rozov, Roye
    Halperin, Eran
    Shamir, Ron
    BMC BIOINFORMATICS, 2012, 13
  • [9] A survey of best practices for RNA-seq data analysis
    Conesa, Ana
    Madrigal, Pedro
    Tarazona, Sonia
    Gomez-Cabrero, David
    Cervera, Alejandra
    McPherson, Andrew
    Szczesniak, Michal Wojciech
    Gaffney, Daniel J.
    Elo, Laura L.
    Zhang, Xuegong
    Mortazavi, Ali
    GENOME BIOLOGY, 2016, 17
  • [10] shortran: a pipeline for small RNA-seq data analysis
    Gupta, Vikas
    Markmann, Katharina
    Pedersen, Christian N. S.
    Stougaard, Jens
    Andersen, Stig U.
    BIOINFORMATICS, 2012, 28 (20) : 2698 - 2700