Superpixel-based Tracking-by-Segmentation using Markov Chains

被引:62
作者
Yeo, Donghun [1 ]
Son, Jeany [1 ]
Han, Bohyung [1 ]
Han, Joon Hee [1 ]
机构
[1] POSTECH, Dept Comp Sci & Engn, Pohang, South Korea
来源
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017) | 2017年
关键词
VIDEO SEGMENTATION;
D O I
10.1109/CVPR.2017.62
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a simple but effective tracking-by-segmentation algorithm using Absorbing Markov Chain (AMC) on superpixel segmentation, where target state is estimated by a combination of bottom-up and top-down approaches, and target segmentation is propagated to subsequent frames in a recursive manner. Our algorithm constructs a graph for AMC using the superpixels identified in two consecutive frames, where background superpixels in the previous frame correspond to absorbing vertices while all other superpixels create transient ones. The weight of each edge depends on the similarity of scores in the end superpixels, which are learned by support vector regression. Once graph construction is completed, target segmentation is estimated using the absorption time of each superpixel. The proposed tracking algorithm achieves substantially improved performance compared to the state-of-the-art segmentation-based tracking techniques in multiple challenging datasets.
引用
收藏
页码:511 / 520
页数:10
相关论文
共 42 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]  
Adam A., 2006, IEEE C COMPUTER VISI, V1, P798, DOI [DOI 10.1109/CVPR.2006.256, 10.1109/CVPR.2006.256]
[3]   A Probabilistic Framework for Joint Segmentation and Tracking [J].
Aeschliman, Chad ;
Park, Johnny ;
Kak, Avinash C. .
2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, :1371-1378
[4]  
[Anonymous], 2007, P IEEE COMP VIS PATT
[5]  
[Anonymous], 2006, BMVC06
[6]   Robust Object Tracking with Online Multiple Instance Learning [J].
Babenko, Boris ;
Yang, Ming-Hsuan ;
Belongie, Serge .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) :1619-1632
[7]   Fast Edge-Preserving PatchMatch for Large Displacement Optical Flow [J].
Bao, Linchao ;
Yang, Qingxiong ;
Jin, Hailin .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (12) :4996-5006
[8]  
Belagiannis V, 2012, LECT NOTES COMPUT SC, V7575, P842, DOI 10.1007/978-3-642-33765-9_60
[9]  
Cho M, 2010, LECT NOTES COMPUT SC, V6315, P492
[10]  
Danelljan M., 2014, BMVC, P6