Multi-stable solitons in PT-symmetric optical lattices

被引:48
|
作者
Li, Chunyan [1 ]
Liu, Haidong [1 ]
Dong, Liangwei [1 ]
机构
[1] Zhejiang Normal Univ, Inst Informat Opt, Jinhua 321004, Peoples R China
来源
OPTICS EXPRESS | 2012年 / 20卷 / 15期
基金
中国国家自然科学基金;
关键词
PERIODIC POTENTIALS; DEFECT SOLITONS; NONLINEARITY; SPECTRA; MODES;
D O I
10.1364/OE.20.016823
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We address the existence and stability properties of optical solitons in a competing cubic-quintic medium with an imprinted complex lattice featuring a parity-time (PT) symmetry. Various families of solitons with even and odd geometrical symmetries are found in both the semi-infinite and the first finite gaps. Linear stability analysis corroborated by direct propagation simulations reveals that solitons with different symmetries and different number of humps can propagate stably at the same propagation constants, i.e., multi-stable solitons can exist in this scheme. Interestingly enough, in sharp contrast to the stability of solitons in a conventional (real) lattice, both even and odd solitons with the same propagation constant belonging to different branches can be stable in the first gap of PT lattice, which indicates that the imaginary part of lattice plays an important role for the stabilization of solitons. (C) 2012 Optical Society of America
引用
收藏
页码:16823 / 16831
页数:9
相关论文
共 50 条
  • [41] Stable dark solitons in PT-symmetric dual-core waveguides
    Bludov, Yu V.
    Konotop, V. V.
    Malomed, B. A.
    PHYSICAL REVIEW A, 2013, 87 (01):
  • [42] Spinor solitons and their PT-symmetric offspring
    Alexeeva, N., V
    Barashenkov, I., V
    Saxena, A.
    ANNALS OF PHYSICS, 2019, 403 : 198 - 223
  • [43] Solitons in a Hamiltonian PT-symmetric coupler
    Zezyulin, Dmitry A.
    Konotop, Vladimir V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (01)
  • [44] Solitons in a PT-symmetric χ(2) coupler
    Ogren, Magnus
    Abdullaev, Fatkhulla Kh.
    Konotop, Vladimir V.
    OPTICS LETTERS, 2017, 42 (20) : 4079 - 4082
  • [45] Nonlinear dynamics in PT-symmetric lattices
    Kevrekidis, Panayotis G.
    Pelinovsky, Dmitry E.
    Tyugin, Dmitry Y.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (36)
  • [46] Topological insulators in PT-symmetric lattices
    Harari, Gal
    Plotnik, Yonatan
    Bandres, Miguel
    Lumer, Yaakov
    Rechtsman, Mikael. C.
    Segev, Mordechai
    2015 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2015,
  • [47] Two-dimensional solitons in cubic-saturable media with PT-symmetric lattices
    Goksel, Izzet
    Antar, Nalan
    Bakirtas, Ilkay
    CHAOS SOLITONS & FRACTALS, 2018, 109 : 83 - 89
  • [48] Stabilization of fundamental solitons in the nonlinear fractional Schrodinger equation with PT-symmetric nonlinear lattices
    Su, Weiwei
    Deng, Hanying
    Dong, Liangwei
    Huang, Zhenfen
    Huang, Changming
    CHAOS SOLITONS & FRACTALS, 2020, 141
  • [49] The stability and collision dynamics of quantum droplets in PT-symmetric optical lattices
    Hu, Juncheng
    Wang, Hongcheng
    Chen, Guihua
    Zhang, Qingmao
    CHAOS SOLITONS & FRACTALS, 2025, 191
  • [50] PT-symmetric sinusoidal optical lattices at the symmetry-breaking threshold
    Graefe, Eva-Maria
    Jones, H. F.
    PHYSICAL REVIEW A, 2011, 84 (01):