Multi-stable solitons in PT-symmetric optical lattices

被引:48
|
作者
Li, Chunyan [1 ]
Liu, Haidong [1 ]
Dong, Liangwei [1 ]
机构
[1] Zhejiang Normal Univ, Inst Informat Opt, Jinhua 321004, Peoples R China
来源
OPTICS EXPRESS | 2012年 / 20卷 / 15期
基金
中国国家自然科学基金;
关键词
PERIODIC POTENTIALS; DEFECT SOLITONS; NONLINEARITY; SPECTRA; MODES;
D O I
10.1364/OE.20.016823
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We address the existence and stability properties of optical solitons in a competing cubic-quintic medium with an imprinted complex lattice featuring a parity-time (PT) symmetry. Various families of solitons with even and odd geometrical symmetries are found in both the semi-infinite and the first finite gaps. Linear stability analysis corroborated by direct propagation simulations reveals that solitons with different symmetries and different number of humps can propagate stably at the same propagation constants, i.e., multi-stable solitons can exist in this scheme. Interestingly enough, in sharp contrast to the stability of solitons in a conventional (real) lattice, both even and odd solitons with the same propagation constant belonging to different branches can be stable in the first gap of PT lattice, which indicates that the imaginary part of lattice plays an important role for the stabilization of solitons. (C) 2012 Optical Society of America
引用
收藏
页码:16823 / 16831
页数:9
相关论文
共 50 条
  • [31] Bound states in the continuum in PT-symmetric optical lattices
    Longhi, Stefano
    OPTICS LETTERS, 2014, 39 (06) : 1697 - 1700
  • [32] Observation of Defect States in PT-Symmetric Optical Lattices
    Regensburger, Alois
    Miri, Mohammad-Ali
    Bersch, Christoph
    Naeger, Jakob
    Onishchukov, Georgy
    Christodoulides, Demetrios N.
    Peschel, Ulf
    PHYSICAL REVIEW LETTERS, 2013, 110 (22)
  • [33] Controllable optical Zitterbewegung in PT-symmetric photonic lattices
    Zhan, Kaiyun
    Zhao, Tingjun
    Chen, Qixuan
    Zhang, Qian
    Kang, Xinyue
    APPLIED PHYSICS LETTERS, 2023, 123 (19)
  • [34] Anderson localization of light in PT-symmetric optical lattices
    Jovic, Dragana M.
    Denz, Cornelia
    Belic, Milivoj R.
    OPTICS LETTERS, 2012, 37 (21) : 4455 - 4457
  • [35] Stability and internal interaction of multipole solitons in nonlocal PT-symmetric lattices
    Huang, Jing
    Weng, Yuanhang
    Wang, Hong
    OPTICS EXPRESS, 2018, 26 (09): : 11667 - 11677
  • [36] Optical solitons in PT-symmetric nonlinear couplers with gain and loss
    Alexeeva, N. V.
    Barashenkov, I. V.
    Sukhorukov, Andrey A.
    Kivshar, Yuri S.
    PHYSICAL REVIEW A, 2012, 85 (06):
  • [37] Discrete solitons and vortices on two-dimensional lattices of PT-symmetric couplers
    Chen, Zhaopin
    Liu, Jingfeng
    Fu, Shenhe
    Li, Yongyao
    Malomed, Boris A.
    OPTICS EXPRESS, 2014, 22 (24): : 29679 - 29692
  • [38] On the existence of real spectra in PT-symmetric honeycomb optical lattices
    Curtis, Christopher W.
    Ablowitz, Mark J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (22)
  • [39] Gap solitons in PT-symmetric lattices with a lower refractive-index core
    Dong, Liangwei
    Gu, Linlin
    Guo, Dengchu
    PHYSICAL REVIEW A, 2015, 91 (05):
  • [40] Multi-stable cylindrical lattices
    Pirrera, Alberto
    Lachenal, Xavier
    Daynes, Stephen
    Weaver, Paul M.
    Chenchiah, Isaac V.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2013, 61 (11) : 2087 - 2107