Compositional analysis on the reverted austenite and tempered martensite in a Ti-stabilized supermartensitic stainless steel: Segregation, partitioning and carbide precipitation

被引:61
作者
Escobar, J. D. [1 ,2 ,3 ]
Poplawsky, J. D. [4 ]
Faria, G. A. [3 ]
Rodriguez, J. [1 ]
Oliveira, J. P. [3 ]
Salvador, C. A. F. [2 ]
Mei, P. R. [2 ]
Babu, S. S. [5 ,6 ]
Ramirez, A. J. [3 ]
机构
[1] CNPEM, LNNano, Brazilian Nanotechnol Natl Lab, BR-13083970 Campinas, SP, Brazil
[2] Univ Estadual Campinas, Univ Campinas, FEM, Coll Mech Engn, BR-13083860 Campinas, SP, Brazil
[3] Ohio State Univ, Dept Mat Sci & Engn, Welding Engn, 1248 Arthur E Adams Dr, Columbus, OH 43221 USA
[4] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[5] Univ Tennessee, Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA
[6] Oak Ridge Natl Lab, Mfg Demonstrat Facil, Knoxville, TN USA
基金
巴西圣保罗研究基金会;
关键词
Atom probe tomography; Austenite reversion; Isothermal tempering treatments; Synchrotron diffraction; X-RAY-DIFFRACTION; ATOM-PROBE TOMOGRAPHY; RETAINED AUSTENITE; IN-SITU; TRANSFORMATION MECHANISM; GRAIN-BOUNDARIES; MULTIPASS WELDS; HEAT-TREATMENT; TRIP STEELS; MICROSTRUCTURE;
D O I
10.1016/j.matdes.2017.11.055
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Controlling the amount of reverted austenite at room temperature allows for tailoring of mechanical properties in supermartensitic stainless steels. The austenite reversion and stabilization occurs during inter-critical tempering through partitioning of austenite-stabilizing elements. The degree of partitioning greatly depends on the reversion temperature, which dictates the local equilibrium conditions. Atom probe tomography and energy dispersive spectroscopy in transmission electron microscopy were used to study the austenite reversion mechanism in terms of the elemental distribution of austenite-stabilizing, ferrite-stabilizing and carbide forming elements. Synchrotron X-ray diffraction confirmed that the austenite equilibrium phase fraction was reached after 2.5 h of isothermal reversion at 625 degrees C, allowing for direct comparison with thermodynamic and kinetic calculations. However, such soaking time was not enough to produce compositional homogenization in the reverted austenite. The austenite reversion and stabilization mechanism was related mainly to strong partitioning of Ni. Negligible partitioning of Cr, Mo, Si and Ti were observed. Instead, these elements were strongly segregated at the reverted austenite/martensite interfaces. Carbon and Ti played a secondary role in the austenite stabilization through the precipitation of nano-sized Ti (C, N) with partial substitution of Ti by Mo. Virtually carbon-free austenite and martensite were observed away from the interfaces and precipitates. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:95 / 105
页数:11
相关论文
共 52 条
[1]   Characteristics and effects of austenite resulting from tempering of 13Cr-NiMo martensitic steel weld metals [J].
Bilmes, PD ;
Solari, M ;
Llorente, CL .
MATERIALS CHARACTERIZATION, 2001, 46 (04) :285-296
[2]   Austenite Formation from Martensite in a 13Cr6Ni2Mo Supermartensitic Stainless Steel [J].
Bojack, A. ;
Zhao, L. ;
Morris, P. F. ;
Sietsma, J. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2016, 47A (05) :1996-2009
[3]   In-situ determination of austenite and martensite formation in 13Cr6Ni2Mo supermartensitic stainless steel [J].
Bojack, A. ;
Zhao, L. ;
Morris, P. F. ;
Sietsma, J. .
MATERIALS CHARACTERIZATION, 2012, 71 :77-86
[4]   Atomic scale observations of bainite transformation in a high carbon high silicon steel [J].
Caballero, F. G. ;
Miller, M. K. ;
Babu, S. S. ;
Garcia-Mateo, C. .
ACTA MATERIALIA, 2007, 55 (01) :381-390
[5]   Carbon supersaturation of ferrite in a nanocrystalline bainitic steel [J].
Caballero, F. G. ;
Miller, M. K. ;
Garcia-Mateo, C. .
ACTA MATERIALIA, 2010, 58 (07) :2338-2343
[6]   Effect of δ-ferrite on impact properties of supermartensitic stainless steel heat affected zones [J].
Carrouge, D ;
Bhadeshia, HKDH ;
Woollin, P .
SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2004, 9 (05) :377-389
[7]   Evolution of the microstructure of a 15-5PH martensitic stainless steel during precipitation hardening heat treatment [J].
Couturier, Laurent ;
De Geuser, Frederic ;
Descoins, Marion ;
Deschamps, Alexis .
MATERIALS & DESIGN, 2016, 107 :416-425
[8]   Influence of heat treatments on toughness and sensitization of a Ti-alloyed supermartensitic stainless steel [J].
da Silva, G. F. ;
Tavares, S. S. M. ;
Pardal, J. M. ;
Silva, M. R. ;
de Abreu, H. F. G. .
JOURNAL OF MATERIALS SCIENCE, 2011, 46 (24) :7737-7744
[9]   Microstructural Features Affecting Tempering Behavior of 16Cr-5Ni Supermartensitic Steel [J].
De Sanctis, Massimo ;
Lovicu, Gianfranco ;
Valentini, Renzo ;
Dimatteo, Antonella ;
Ishak, Randa ;
Migliaccio, Umberto ;
Montanari, Roberto ;
Pietrangeli, Emanuele .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2015, 46A (05) :1878-1887
[10]   Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation [J].
Dmitrieva, O. ;
Ponge, D. ;
Inden, G. ;
Millan, J. ;
Choi, P. ;
Sietsma, J. ;
Raabe, D. .
ACTA MATERIALIA, 2011, 59 (01) :364-374