Convergence conditions for random quantum circuits

被引:66
作者
Emerson, J
Livine, E
Lloyd, S
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
[3] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[4] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW A | 2005年 / 72卷 / 06期
关键词
D O I
10.1103/PhysRevA.72.060302
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Efficient methods for generating pseudorandomly distributed unitary operators are needed for the practical application of Haar-distributed random operators in quantum communication and noise estimation protocols. We develop a theoretical framework for analyzing pseudorandom ensembles generated through a random circuit composition. We prove that the measure over random circuits converges exponentially (with increasing circuit length) to the uniform (Haar) measure on the unitary group, though the rate for uniform convergence must decrease exponentially with the number of qubits. We describe how the rate of convergence for test functions associated with specific randomization tasks leads to weaker convergence conditions that may allow efficient random circuit constructions.
引用
收藏
页数:4
相关论文
共 18 条
[1]  
BARUT AO, 1986, THEORY GROUP REPRESE
[2]   Remote preparation of quantum states [J].
Bennett, CH ;
Hayden, P ;
Leung, DW ;
Shor, PW ;
Winter, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (01) :56-74
[3]   Incoherent noise and quantum information processing [J].
Boulant, N ;
Emerson, J ;
Havel, TF ;
Cory, DG ;
Furuta, S .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (07) :2955-2961
[4]  
CUCCHIETTI F, UNPUB
[5]   Scalable noise estimation with random unitary operators [J].
Emerson, J ;
Alicki, R ;
Zyczkowski, K .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2005, 7 (10) :S347-S352
[6]   Pseudo-random unitary operators for quantum information processing [J].
Emerson, J ;
Weinstein, YS ;
Saraceno, M ;
Lloyd, S ;
Cory, DG .
SCIENCE, 2003, 302 (5653) :2098-2100
[7]   Fidelity decay as an efficient indicator of quantum chaos [J].
Emerson, J ;
Weinstein, YS ;
Lloyd, S ;
Cory, DG .
PHYSICAL REVIEW LETTERS, 2002, 89 (28)
[8]  
EMERSON J, 2004, PSEUDORANDOM OPERATO, P139
[9]   Exponential gain in quantum computing of quantum chaos and localization [J].
Georgeot, B ;
Shepelyansky, DL .
PHYSICAL REVIEW LETTERS, 2001, 86 (13) :2890-2893
[10]  
HANNAN EJ, 1965, GROUP REPRESENTATION