The Conley index and non-existence of minimal homeomorphisms

被引:15
作者
Franks, J [1 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
关键词
D O I
10.1215/ijm/1255985102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a brief proof of the theorem of P. Le Calvez and J.-C. Yoccoz on the non-existence of a minimal homeomorphism of the finitely punctured plane. The proof here is based on the Conley index.
引用
收藏
页码:457 / 464
页数:8
相关论文
共 9 条
[1]   ISOLATING BLOCKS AND EPSILON CHAINS FOR MAPS [J].
EASTON, R .
PHYSICA D, 1989, 39 (01) :95-110
[2]   A NEW PROOF OF THE BROUWER PLANE TRANSLATION THEOREM [J].
FRANKS, J .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1992, 12 :217-226
[3]  
Lang S., 1965, ALGEBRA
[4]  
LECALVEZ P, THEOREME INDCICE HOM
[5]  
Mauldin R. D., 1981, SCOTTISH BOOK
[6]  
MISCHAIKOW K, 1995, JAPAN J IND APPL MAT, V12, P66
[7]  
RICHESON D, 1998, THESIS NW U
[8]  
ROBIN J, 1988, ERGOD THEOR DYN, V8, P375
[9]   THE CONLEY INDEX FOR DISCRETE SEMIDYNAMICAL SYSTEMS [J].
SZYMCZAK, A .
TOPOLOGY AND ITS APPLICATIONS, 1995, 66 (03) :215-240