NUMERICAL SIMULATIONS FOR A VARIABLE ORDER FRACTIONAL CABLE EQUATION

被引:12
作者
Nagy, A. M. [1 ]
Sweilam, N. H. [2 ]
机构
[1] Benha Univ, Dept Math, Fac Sci, Banha 13518, Egypt
[2] Cairo Univ, Dept Math, Fac Sci, Giza 12613, Egypt
关键词
Crank-Nicolson method; variable order fractional cable equation; stability analysis;
D O I
10.1016/S0252-9602(18)30767-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, Crank-Nicolson method is used to study the variable order fractional cable equation. The variable order fractional derivatives are described in the Riemann-Liouville and the Grunwald-Letnikov sense. The stability analysis of the proposed technique is discussed. Numerical results are provided and compared with exact solutions to show the accuracy of the proposed technique.
引用
收藏
页码:580 / 590
页数:11
相关论文
共 25 条
[1]  
[Anonymous], 2006, THEORY APPL FRACTION
[2]  
[Anonymous], 2006, ANZIAM J
[3]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[4]   The fractional-order governing equation of Levy motion [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1413-1423
[5]   Numerical analysis for a variable-order nonlinear cable equation [J].
Chen, Chang-Ming ;
Liu, F. ;
Burrage, K. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (02) :209-224
[6]   NUMERICAL SCHEMES WITH HIGH SPATIAL ACCURACY FOR A VARIABLE-ORDER ANOMALOUS SUBDIFFUSION EQUATION [J].
Chen, Chang-Ming ;
Liu, F. ;
Anh, V. ;
Turner, I. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (04) :1740-1760
[7]  
Henry I B, 2008, PHYS REV LETT, V100
[8]   Control of damping oscillations by fractional differential operator with time-dependent order [J].
Ingman, D ;
Suzdalnitsky, J .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (52) :5585-5595
[9]   Constitutive dynamic-order model for nonlinear contact phenomena [J].
Ingman, D ;
Suzdalnitsky, J ;
Zeifman, M .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2000, 67 (02) :383-390
[10]   Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions [J].
Langlands, T. A. M. ;
Henry, B. I. ;
Wearne, S. L. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 59 (06) :761-808