Character sums and the series L(1,χ) with applications to real quadratic fields

被引:1
作者
Leu, MG [1 ]
机构
[1] Natl Cent Univ, Dept Math, Chungli 32054, Taiwan
关键词
character sum; Dirichlet series; class number formula; real quadratic field;
D O I
10.2969/jmsj/05110151
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, let k = 0 or 1 (mod4) be a fundamental discriminant, and let chi(n) be the real even primitive character module k. The series L(1,chi) = Sigma(n=1)(infinity) chi(n)/n can be divided into groups of k consecutive terms. Let v be any nonnegative integer, j an integer, 0 less than or equal to j less than or equal to k - 1, and let T(v, j, chi) = Sigma(n=j+1)(j+k) chi(vk + n)/vk + n Then L(1,chi) = Sigma(v=0)(infinity) T(V, 0, chi) = Sigma(n=1)(j) chi(n)/n + Sigma(v=0)(infinity) T(v, j, chi). In section 2, Theorems 2.1 and 2.2 reveal a surprising relation between incomplete character sums and partial sums of Dirichlet series. For example, we will prove that T(v, j, chi).M < 0 for integer v greater than or equal to max{1, root k//M/} if M = Sigma(m=1)(j-1) chi(m)+ 1/2 chi(j) not equal 0 and /M/ greater than or equal to 3/2. In section 3, we will derive algorithm and formula for calculating the class number of a real quadratic field. In section 4, we will attempt to make a connection between two conjectures on real quadratic fields and the sign of T(0, 20, chi).
引用
收藏
页码:151 / 166
页数:16
相关论文
共 14 条
[1]  
Apostol TM., 1998, INTRO ANAL NUMBER TH
[2]  
BERNSTEIN L, 1976, PAC J MATH, V63, P63, DOI 10.2140/pjm.1976.63.63
[3]  
Cohn H., 1980, Advanced Number Theory, Vfirst
[4]  
DAVENPORT H, 1949, J LOND MATH SOC, V24, P229
[5]   SYMMETRIES FOR SUMS OF LEGENDRE SYMBOL [J].
JOHNSON, W ;
MITCHELL, KJ .
PACIFIC JOURNAL OF MATHEMATICS, 1977, 69 (01) :117-124
[6]   ON 2 CONJECTURES ON REAL QUADRATIC FIELDS [J].
KIM, HK ;
LEU, MG ;
ONO, T .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1987, 63 (06) :222-224
[7]   INTEGER SEQUENCES HAVING PRESCRIBED QUADRATIC CHARACTER [J].
LEHMER, DH ;
LEHMER, E ;
SHANKS, D .
MATHEMATICS OF COMPUTATION, 1970, 24 (110) :433-+
[8]   On L(1,chi) and class number formula for the real quadratic fields [J].
Leu, MG .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1996, 72 (03) :69-74
[9]   On the series for L(1,chi) [J].
Leu, MG ;
Li, WCW .
NAGOYA MATHEMATICAL JOURNAL, 1996, 141 :125-142
[10]  
Polya G., 1918, GOTTINGER NACHRICHTE, P21